Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq2 | GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2159 | . . . . . 6 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 119 | . . . . 5 ⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 1546 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | 3 | anbi2d 460 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
5 | 4 | exbidv 1813 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
6 | df-clel 2161 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
7 | df-clel 2161 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵)) |
Copyright terms: Public domain | W3C validator |