| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difsnb | GIF version | ||
| Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 3804. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| difsnb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difsn 3804 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) | |
| 2 | neldifsnd 3798 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) | |
| 3 | nelne1 2490 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴})) | |
| 4 | 2, 3 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ (𝐵 ∖ {𝐴})) |
| 5 | 4 | necomd 2486 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵) |
| 6 | 5 | necon2bi 2455 | . 2 ⊢ ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
| 7 | 1, 6 | impbii 126 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |