ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnb GIF version

Theorem difsnb 3736
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 3730. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 3730 . 2 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
2 neldifsnd 3724 . . . . 5 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}))
3 nelne1 2437 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴}))
42, 3mpdan 421 . . . 4 (𝐴𝐵𝐵 ≠ (𝐵 ∖ {𝐴}))
54necomd 2433 . . 3 (𝐴𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵)
65necon2bi 2402 . 2 ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴𝐵)
71, 6impbii 126 1 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1353  wcel 2148  wne 2347  cdif 3127  {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2740  df-dif 3132  df-sn 3599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator