ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnb GIF version

Theorem difsnb 3782
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 3776. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 3776 . 2 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
2 neldifsnd 3770 . . . . 5 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}))
3 nelne1 2467 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴}))
42, 3mpdan 421 . . . 4 (𝐴𝐵𝐵 ≠ (𝐵 ∖ {𝐴}))
54necomd 2463 . . 3 (𝐴𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵)
65necon2bi 2432 . 2 ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴𝐵)
71, 6impbii 126 1 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1373  wcel 2177  wne 2377  cdif 3167  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3172  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator