![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difsnb | GIF version |
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 3582. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difsnb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsn 3582 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) | |
2 | neldifsnd 3579 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) | |
3 | nelne1 2346 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴})) | |
4 | 2, 3 | mpdan 413 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ (𝐵 ∖ {𝐴})) |
5 | 4 | necomd 2342 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵) |
6 | 5 | necon2bi 2311 | . 2 ⊢ ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
7 | 1, 6 | impbii 125 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 = wceq 1290 ∈ wcel 1439 ≠ wne 2256 ∖ cdif 2999 {csn 3452 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-v 2624 df-dif 3004 df-sn 3458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |