Step | Hyp | Ref
| Expression |
1 | | iseqf1olemstep.j |
. . . . . 6
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
2 | | f1of 5442 |
. . . . . 6
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
4 | | iseqf1olemstep.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
5 | | elfzel1 9980 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
6 | 4, 5 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | elfzel2 9979 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
8 | 4, 7 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
9 | 6, 8 | fzfigd 10387 |
. . . . 5
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
10 | | fex 5725 |
. . . . 5
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V) |
11 | 3, 9, 10 | syl2anc 409 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ V) |
12 | 11 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → 𝐽 ∈ V) |
13 | 1 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
14 | | iseqf1olemstep.const |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
15 | 14 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
16 | | eqcom 2172 |
. . . . . . . . . 10
⊢ (𝐾 = (◡𝐽‘𝐾) ↔ (◡𝐽‘𝐾) = 𝐾) |
17 | 16 | biimpi 119 |
. . . . . . . . 9
⊢ (𝐾 = (◡𝐽‘𝐾) → (◡𝐽‘𝐾) = 𝐾) |
18 | 17 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → (◡𝐽‘𝐾) = 𝐾) |
19 | | f1ocnvfvb 5759 |
. . . . . . . . . 10
⊢ ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐽‘𝐾) = 𝐾 ↔ (◡𝐽‘𝐾) = 𝐾)) |
20 | 1, 4, 4, 19 | syl3anc 1233 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐽‘𝐾) = 𝐾 ↔ (◡𝐽‘𝐾) = 𝐾)) |
21 | 20 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → ((𝐽‘𝐾) = 𝐾 ↔ (◡𝐽‘𝐾) = 𝐾)) |
22 | 18, 21 | mpbird 166 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → (𝐽‘𝐾) = 𝐾) |
23 | | elfzelz 9981 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) |
24 | 4, 23 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
25 | 24 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → 𝐾 ∈ ℤ) |
26 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐾 → (𝐽‘𝑥) = (𝐽‘𝐾)) |
27 | | id 19 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐾 → 𝑥 = 𝐾) |
28 | 26, 27 | eqeq12d 2185 |
. . . . . . . . 9
⊢ (𝑥 = 𝐾 → ((𝐽‘𝑥) = 𝑥 ↔ (𝐽‘𝐾) = 𝐾)) |
29 | 28 | ralsng 3623 |
. . . . . . . 8
⊢ (𝐾 ∈ ℤ →
(∀𝑥 ∈ {𝐾} (𝐽‘𝑥) = 𝑥 ↔ (𝐽‘𝐾) = 𝐾)) |
30 | 25, 29 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → (∀𝑥 ∈ {𝐾} (𝐽‘𝑥) = 𝑥 ↔ (𝐽‘𝐾) = 𝐾)) |
31 | 22, 30 | mpbird 166 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → ∀𝑥 ∈ {𝐾} (𝐽‘𝑥) = 𝑥) |
32 | | ralun 3309 |
. . . . . 6
⊢
((∀𝑥 ∈
(𝑀..^𝐾)(𝐽‘𝑥) = 𝑥 ∧ ∀𝑥 ∈ {𝐾} (𝐽‘𝑥) = 𝑥) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝐽‘𝑥) = 𝑥) |
33 | 15, 31, 32 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝐽‘𝑥) = 𝑥) |
34 | | elfzuz 9977 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
35 | | fzisfzounsn 10192 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾})) |
36 | 4, 34, 35 | 3syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑀...𝐾) = ((𝑀..^𝐾) ∪ {𝐾})) |
37 | 36 | raleqdv 2671 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝐽‘𝑥) = 𝑥)) |
38 | 37 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → (∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ ((𝑀..^𝐾) ∪ {𝐾})(𝐽‘𝑥) = 𝑥)) |
39 | 33, 38 | mpbird 166 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → ∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥) |
40 | | seq3f1olemstep.jp |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
41 | 40 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
42 | 13, 39, 41 | 3jca 1172 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
43 | | nfcv 2312 |
. . . 4
⊢
Ⅎ𝑓𝐽 |
44 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑓 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) |
45 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑓∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥 |
46 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑓𝑀 |
47 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑓
+ |
48 | | nfcsb1v 3082 |
. . . . . . . 8
⊢
Ⅎ𝑓⦋𝐽 / 𝑓⦌𝑃 |
49 | 46, 47, 48 | nfseq 10411 |
. . . . . . 7
⊢
Ⅎ𝑓seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃) |
50 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑓𝑁 |
51 | 49, 50 | nffv 5506 |
. . . . . 6
⊢
Ⅎ𝑓(seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) |
52 | 51 | nfeq1 2322 |
. . . . 5
⊢
Ⅎ𝑓(seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) |
53 | 44, 45, 52 | nf3an 1559 |
. . . 4
⊢
Ⅎ𝑓(𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
54 | | f1oeq1 5431 |
. . . . 5
⊢ (𝑓 = 𝐽 → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
55 | | fveq1 5495 |
. . . . . . 7
⊢ (𝑓 = 𝐽 → (𝑓‘𝑥) = (𝐽‘𝑥)) |
56 | 55 | eqeq1d 2179 |
. . . . . 6
⊢ (𝑓 = 𝐽 → ((𝑓‘𝑥) = 𝑥 ↔ (𝐽‘𝑥) = 𝑥)) |
57 | 56 | ralbidv 2470 |
. . . . 5
⊢ (𝑓 = 𝐽 → (∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥)) |
58 | | csbeq1a 3058 |
. . . . . . . 8
⊢ (𝑓 = 𝐽 → 𝑃 = ⦋𝐽 / 𝑓⦌𝑃) |
59 | 58 | seqeq3d 10409 |
. . . . . . 7
⊢ (𝑓 = 𝐽 → seq𝑀( + , 𝑃) = seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)) |
60 | 59 | fveq1d 5498 |
. . . . . 6
⊢ (𝑓 = 𝐽 → (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁)) |
61 | 60 | eqeq1d 2179 |
. . . . 5
⊢ (𝑓 = 𝐽 → ((seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) ↔ (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
62 | 54, 57, 61 | 3anbi123d 1307 |
. . . 4
⊢ (𝑓 = 𝐽 → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
63 | 43, 53, 62 | spcegf 2813 |
. . 3
⊢ (𝐽 ∈ V → ((𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝐽‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
64 | 12, 42, 63 | sylc 62 |
. 2
⊢ ((𝜑 ∧ 𝐾 = (◡𝐽‘𝐾)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
65 | 4 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → 𝐾 ∈ (𝑀...𝑁)) |
66 | 1 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
67 | | eqid 2170 |
. . . 4
⊢ (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
68 | 65, 66, 67 | iseqf1olemqf1o 10449 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))):(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
69 | 14 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽‘𝑥) = 𝑥) |
70 | 65, 66, 67, 69 | iseqf1olemqk 10450 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → ∀𝑥 ∈ (𝑀...𝐾)((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥) |
71 | | iseqf1o.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
72 | 71 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
73 | | iseqf1o.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
74 | 73 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
75 | | iseqf1o.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
76 | 75 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
77 | | iseqf1o.4 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
78 | 77 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
79 | | iseqf1o.6 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
80 | 79 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → 𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
81 | | iseqf1o.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
82 | 81 | adantlr 474 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
83 | | neqne 2348 |
. . . . . 6
⊢ (¬
𝐾 = (◡𝐽‘𝐾) → 𝐾 ≠ (◡𝐽‘𝐾)) |
84 | 83 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → 𝐾 ≠ (◡𝐽‘𝐾)) |
85 | | seq3f1olemstep.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
86 | 72, 74, 76, 78, 80, 82, 65, 66, 69, 84, 67, 85 | seq3f1olemqsum 10456 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁)) |
87 | 40 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → (seq𝑀( + , ⦋𝐽 / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
88 | 86, 87 | eqtr3d 2205 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
89 | 65, 5 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → 𝑀 ∈ ℤ) |
90 | 65, 7 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → 𝑁 ∈ ℤ) |
91 | 89, 90 | fzfigd 10387 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → (𝑀...𝑁) ∈ Fin) |
92 | | mptexg 5721 |
. . . 4
⊢ ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V) |
93 | | nfcv 2312 |
. . . . 5
⊢
Ⅎ𝑓(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
94 | | nfv 1521 |
. . . . . 6
⊢
Ⅎ𝑓(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))):(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) |
95 | | nfv 1521 |
. . . . . 6
⊢
Ⅎ𝑓∀𝑥 ∈ (𝑀...𝐾)((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥 |
96 | | nfcsb1v 3082 |
. . . . . . . . 9
⊢
Ⅎ𝑓⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃 |
97 | 46, 47, 96 | nfseq 10411 |
. . . . . . . 8
⊢
Ⅎ𝑓seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃) |
98 | 97, 50 | nffv 5506 |
. . . . . . 7
⊢
Ⅎ𝑓(seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) |
99 | 98 | nfeq1 2322 |
. . . . . 6
⊢
Ⅎ𝑓(seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) |
100 | 94, 95, 99 | nf3an 1559 |
. . . . 5
⊢
Ⅎ𝑓((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))):(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) |
101 | | f1oeq1 5431 |
. . . . . 6
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → (𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ↔ (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))):(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
102 | | fveq1 5495 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → (𝑓‘𝑥) = ((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥)) |
103 | 102 | eqeq1d 2179 |
. . . . . . 7
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → ((𝑓‘𝑥) = 𝑥 ↔ ((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥)) |
104 | 103 | ralbidv 2470 |
. . . . . 6
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → (∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ↔ ∀𝑥 ∈ (𝑀...𝐾)((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥)) |
105 | | csbeq1a 3058 |
. . . . . . . . 9
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → 𝑃 = ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃) |
106 | 105 | seqeq3d 10409 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → seq𝑀( + , 𝑃) = seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)) |
107 | 106 | fveq1d 5498 |
. . . . . . 7
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁)) |
108 | 107 | eqeq1d 2179 |
. . . . . 6
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → ((seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁) ↔ (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
109 | 101, 104,
108 | 3anbi123d 1307 |
. . . . 5
⊢ (𝑓 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) → ((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) ↔ ((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))):(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
110 | 93, 100, 109 | spcegf 2813 |
. . . 4
⊢ ((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V → (((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))):(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
111 | 91, 92, 110 | 3syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → (((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))):(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)((𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢)))‘𝑥) = 𝑥 ∧ (seq𝑀( + , ⦋(𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) / 𝑓⦌𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))) |
112 | 68, 70, 88, 111 | mp3and 1335 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐾 = (◡𝐽‘𝐾)) → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |
113 | | f1ocnv 5455 |
. . . . . . 7
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
114 | | f1of 5442 |
. . . . . . 7
⊢ (◡𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
115 | 1, 113, 114 | 3syl 17 |
. . . . . 6
⊢ (𝜑 → ◡𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
116 | 115, 4 | ffvelrnd 5632 |
. . . . 5
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ (𝑀...𝑁)) |
117 | | elfzelz 9981 |
. . . . 5
⊢ ((◡𝐽‘𝐾) ∈ (𝑀...𝑁) → (◡𝐽‘𝐾) ∈ ℤ) |
118 | 116, 117 | syl 14 |
. . . 4
⊢ (𝜑 → (◡𝐽‘𝐾) ∈ ℤ) |
119 | | zdceq 9287 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ (◡𝐽‘𝐾) ∈ ℤ) →
DECID 𝐾 =
(◡𝐽‘𝐾)) |
120 | 24, 118, 119 | syl2anc 409 |
. . 3
⊢ (𝜑 → DECID 𝐾 = (◡𝐽‘𝐾)) |
121 | | exmiddc 831 |
. . 3
⊢
(DECID 𝐾 = (◡𝐽‘𝐾) → (𝐾 = (◡𝐽‘𝐾) ∨ ¬ 𝐾 = (◡𝐽‘𝐾))) |
122 | 120, 121 | syl 14 |
. 2
⊢ (𝜑 → (𝐾 = (◡𝐽‘𝐾) ∨ ¬ 𝐾 = (◡𝐽‘𝐾))) |
123 | 64, 112, 122 | mpjaodan 793 |
1
⊢ (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓‘𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))) |