ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mob GIF version

Theorem mob 2954
Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
mob (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mob
StepHypRef Expression
1 elex 2782 . . . . 5 (𝐵𝐷𝐵 ∈ V)
2 nfcv 2347 . . . . . . . 8 𝑥𝐴
3 nfv 1550 . . . . . . . . . 10 𝑥 𝐵 ∈ V
4 nfmo1 2065 . . . . . . . . . 10 𝑥∃*𝑥𝜑
5 nfv 1550 . . . . . . . . . 10 𝑥𝜓
63, 4, 5nf3an 1588 . . . . . . . . 9 𝑥(𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓)
7 nfv 1550 . . . . . . . . 9 𝑥(𝐴 = 𝐵𝜒)
86, 7nfim 1594 . . . . . . . 8 𝑥((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
9 moi.1 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝜑𝜓))
1093anbi3d 1330 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) ↔ (𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓)))
11 eqeq1 2211 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
1211bibi1d 233 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝜒) ↔ (𝐴 = 𝐵𝜒)))
1310, 12imbi12d 234 . . . . . . . 8 (𝑥 = 𝐴 → (((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐵𝜒)) ↔ ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))))
14 moi.2 . . . . . . . . 9 (𝑥 = 𝐵 → (𝜑𝜒))
1514mob2 2952 . . . . . . . 8 ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐵𝜒))
162, 8, 13, 15vtoclgf 2830 . . . . . . 7 (𝐴𝐶 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒)))
1716com12 30 . . . . . 6 ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒)))
18173expib 1208 . . . . 5 (𝐵 ∈ V → ((∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒))))
191, 18syl 14 . . . 4 (𝐵𝐷 → ((∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒))))
2019com3r 79 . . 3 (𝐴𝐶 → (𝐵𝐷 → ((∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))))
2120imp 124 . 2 ((𝐴𝐶𝐵𝐷) → ((∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒)))
22213impib 1203 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  ∃*wmo 2054  wcel 2175  Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by:  moi  2955  rmob  3090  2omotaplemst  7369
  Copyright terms: Public domain W3C validator