Proof of Theorem mob
| Step | Hyp | Ref
| Expression |
| 1 | | elex 2774 |
. . . . 5
⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) |
| 2 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
| 3 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝐵 ∈ V |
| 4 | | nfmo1 2057 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∃*𝑥𝜑 |
| 5 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜓 |
| 6 | 3, 4, 5 | nf3an 1580 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) |
| 7 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐴 = 𝐵 ↔ 𝜒) |
| 8 | 6, 7 | nfim 1586 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) |
| 9 | | moi.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 10 | 9 | 3anbi3d 1329 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜑) ↔ (𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓))) |
| 11 | | eqeq1 2203 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
| 12 | 11 | bibi1d 233 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ↔ 𝜒) ↔ (𝐴 = 𝐵 ↔ 𝜒))) |
| 13 | 10, 12 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐵 ↔ 𝜒)) ↔ ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)))) |
| 14 | | moi.2 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| 15 | 14 | mob2 2944 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐵 ↔ 𝜒)) |
| 16 | 2, 8, 13, 15 | vtoclgf 2822 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒))) |
| 17 | 16 | com12 30 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ↔ 𝜒))) |
| 18 | 17 | 3expib 1208 |
. . . . 5
⊢ (𝐵 ∈ V → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ↔ 𝜒)))) |
| 19 | 1, 18 | syl 14 |
. . . 4
⊢ (𝐵 ∈ 𝐷 → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ↔ 𝜒)))) |
| 20 | 19 | com3r 79 |
. . 3
⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)))) |
| 21 | 20 | imp 124 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒))) |
| 22 | 21 | 3impib 1203 |
1
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) |