Proof of Theorem mob
Step | Hyp | Ref
| Expression |
1 | | elex 2741 |
. . . . 5
⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) |
2 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
3 | | nfv 1521 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝐵 ∈ V |
4 | | nfmo1 2031 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∃*𝑥𝜑 |
5 | | nfv 1521 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜓 |
6 | 3, 4, 5 | nf3an 1559 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) |
7 | | nfv 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐴 = 𝐵 ↔ 𝜒) |
8 | 6, 7 | nfim 1565 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) |
9 | | moi.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
10 | 9 | 3anbi3d 1313 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜑) ↔ (𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓))) |
11 | | eqeq1 2177 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
12 | 11 | bibi1d 232 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ↔ 𝜒) ↔ (𝐴 = 𝐵 ↔ 𝜒))) |
13 | 10, 12 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐵 ↔ 𝜒)) ↔ ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)))) |
14 | | moi.2 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
15 | 14 | mob2 2910 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐵 ↔ 𝜒)) |
16 | 2, 8, 13, 15 | vtoclgf 2788 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒))) |
17 | 16 | com12 30 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ↔ 𝜒))) |
18 | 17 | 3expib 1201 |
. . . . 5
⊢ (𝐵 ∈ V → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ↔ 𝜒)))) |
19 | 1, 18 | syl 14 |
. . . 4
⊢ (𝐵 ∈ 𝐷 → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ↔ 𝜒)))) |
20 | 19 | com3r 79 |
. . 3
⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)))) |
21 | 20 | imp 123 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒))) |
22 | 21 | 3impib 1196 |
1
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) |