| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfop | GIF version | ||
| Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-op 3675 | . 2 ⊢ 〈𝐴, 𝐵〉 = {𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
| 2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfel1 2383 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
| 4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfel1 2383 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | 2 | nfsn 3726 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴} |
| 7 | 2, 4 | nfpr 3716 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| 8 | 6, 7 | nfpr 3716 | . . . . 5 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
| 9 | 8 | nfcri 2366 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}} |
| 10 | 3, 5, 9 | nf3an 1612 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}}) |
| 11 | 10 | nfab 2377 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} |
| 12 | 1, 11 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 1002 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 Vcvv 2799 {csn 3666 {cpr 3667 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: nfopd 3873 moop2 4337 fliftfuns 5921 dfmpo 6367 qliftfuns 6764 xpf1o 7001 caucvgprprlemaddq 7891 nfseq 10674 txcnp 14939 cnmpt1t 14953 cnmpt2t 14961 |
| Copyright terms: Public domain | W3C validator |