![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfop | GIF version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 | ⊢ Ⅎ𝑥𝐴 |
nfop.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 3628 | . 2 ⊢ 〈𝐴, 𝐵〉 = {𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfel1 2347 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfel1 2347 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | 2 | nfsn 3679 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴} |
7 | 2, 4 | nfpr 3669 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
8 | 6, 7 | nfpr 3669 | . . . . 5 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
9 | 8 | nfcri 2330 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}} |
10 | 3, 5, 9 | nf3an 1577 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}}) |
11 | 10 | nfab 2341 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} |
12 | 1, 11 | nfcxfr 2333 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 980 ∈ wcel 2164 {cab 2179 Ⅎwnfc 2323 Vcvv 2760 {csn 3619 {cpr 3620 〈cop 3622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: nfopd 3822 moop2 4281 fliftfuns 5842 dfmpo 6278 qliftfuns 6675 xpf1o 6902 caucvgprprlemaddq 7770 nfseq 10531 txcnp 14450 cnmpt1t 14464 cnmpt2t 14472 |
Copyright terms: Public domain | W3C validator |