ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop GIF version

Theorem nfop 3872
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1 𝑥𝐴
nfop.2 𝑥𝐵
Assertion
Ref Expression
nfop 𝑥𝐴, 𝐵

Proof of Theorem nfop
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-op 3675 . 2 𝐴, 𝐵⟩ = {𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})}
2 nfop.1 . . . . 5 𝑥𝐴
32nfel1 2383 . . . 4 𝑥 𝐴 ∈ V
4 nfop.2 . . . . 5 𝑥𝐵
54nfel1 2383 . . . 4 𝑥 𝐵 ∈ V
62nfsn 3726 . . . . . 6 𝑥{𝐴}
72, 4nfpr 3716 . . . . . 6 𝑥{𝐴, 𝐵}
86, 7nfpr 3716 . . . . 5 𝑥{{𝐴}, {𝐴, 𝐵}}
98nfcri 2366 . . . 4 𝑥 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}}
103, 5, 9nf3an 1612 . . 3 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})
1110nfab 2377 . 2 𝑥{𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})}
121, 11nfcxfr 2369 1 𝑥𝐴, 𝐵
Colors of variables: wff set class
Syntax hints:  w3a 1002  wcel 2200  {cab 2215  wnfc 2359  Vcvv 2799  {csn 3666  {cpr 3667  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  nfopd  3873  moop2  4337  fliftfuns  5921  dfmpo  6367  qliftfuns  6764  xpf1o  7001  caucvgprprlemaddq  7891  nfseq  10674  txcnp  14939  cnmpt1t  14953  cnmpt2t  14961
  Copyright terms: Public domain W3C validator