![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfop | GIF version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 | ⊢ Ⅎ𝑥𝐴 |
nfop.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfop | ⊢ Ⅎ𝑥⟨𝐴, 𝐵⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 3603 | . 2 ⊢ ⟨𝐴, 𝐵⟩ = {𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfel1 2330 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfel1 2330 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | 2 | nfsn 3654 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴} |
7 | 2, 4 | nfpr 3644 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
8 | 6, 7 | nfpr 3644 | . . . . 5 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
9 | 8 | nfcri 2313 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}} |
10 | 3, 5, 9 | nf3an 1566 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}}) |
11 | 10 | nfab 2324 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} |
12 | 1, 11 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥⟨𝐴, 𝐵⟩ |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 ∈ wcel 2148 {cab 2163 Ⅎwnfc 2306 Vcvv 2739 {csn 3594 {cpr 3595 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 |
This theorem is referenced by: nfopd 3797 moop2 4253 fliftfuns 5801 dfmpo 6226 qliftfuns 6621 xpf1o 6846 caucvgprprlemaddq 7709 nfseq 10457 txcnp 13856 cnmpt1t 13870 cnmpt2t 13878 |
Copyright terms: Public domain | W3C validator |