ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfop GIF version

Theorem nfop 3781
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfop.1 𝑥𝐴
nfop.2 𝑥𝐵
Assertion
Ref Expression
nfop 𝑥𝐴, 𝐵

Proof of Theorem nfop
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-op 3592 . 2 𝐴, 𝐵⟩ = {𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})}
2 nfop.1 . . . . 5 𝑥𝐴
32nfel1 2323 . . . 4 𝑥 𝐴 ∈ V
4 nfop.2 . . . . 5 𝑥𝐵
54nfel1 2323 . . . 4 𝑥 𝐵 ∈ V
62nfsn 3643 . . . . . 6 𝑥{𝐴}
72, 4nfpr 3633 . . . . . 6 𝑥{𝐴, 𝐵}
86, 7nfpr 3633 . . . . 5 𝑥{{𝐴}, {𝐴, 𝐵}}
98nfcri 2306 . . . 4 𝑥 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}}
103, 5, 9nf3an 1559 . . 3 𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})
1110nfab 2317 . 2 𝑥{𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})}
121, 11nfcxfr 2309 1 𝑥𝐴, 𝐵
Colors of variables: wff set class
Syntax hints:  w3a 973  wcel 2141  {cab 2156  wnfc 2299  Vcvv 2730  {csn 3583  {cpr 3584  cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  nfopd  3782  moop2  4236  fliftfuns  5777  dfmpo  6202  qliftfuns  6597  xpf1o  6822  caucvgprprlemaddq  7670  nfseq  10411  txcnp  13065  cnmpt1t  13079  cnmpt2t  13087
  Copyright terms: Public domain W3C validator