Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfop | GIF version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfop.1 | ⊢ Ⅎ𝑥𝐴 |
nfop.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 3585 | . 2 ⊢ 〈𝐴, 𝐵〉 = {𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfel1 2319 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfel1 2319 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | 2 | nfsn 3636 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴} |
7 | 2, 4 | nfpr 3626 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
8 | 6, 7 | nfpr 3626 | . . . . 5 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
9 | 8 | nfcri 2302 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}} |
10 | 3, 5, 9 | nf3an 1554 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}}) |
11 | 10 | nfab 2313 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} |
12 | 1, 11 | nfcxfr 2305 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 968 ∈ wcel 2136 {cab 2151 Ⅎwnfc 2295 Vcvv 2726 {csn 3576 {cpr 3577 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: nfopd 3775 moop2 4229 fliftfuns 5766 dfmpo 6191 qliftfuns 6585 xpf1o 6810 caucvgprprlemaddq 7649 nfseq 10390 txcnp 12911 cnmpt1t 12925 cnmpt2t 12933 |
Copyright terms: Public domain | W3C validator |