| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbii | GIF version | ||
| Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| nfbii | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1516 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 3 | 1, 2 | imbi12i 239 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)) |
| 4 | 3 | albii 1516 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 5 | df-nf 1507 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 6 | df-nf 1507 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 212 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nfxfr 1520 nfxfrd 1521 nfsb 1997 nfsbt 2027 hbsbd 2033 sbal1yz 2052 dvelimALT 2061 dvelimfv 2062 dvelimor 2069 nfeudv 2092 nfeuv 2095 nfceqi 2368 nfreudxy 2705 dfnfc2 3905 |
| Copyright terms: Public domain | W3C validator |