![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfbii | GIF version |
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
nfbii | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1429 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
3 | 1, 2 | imbi12i 238 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)) |
4 | 3 | albii 1429 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) |
5 | df-nf 1420 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
6 | df-nf 1420 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 211 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1312 Ⅎwnf 1419 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 |
This theorem depends on definitions: df-bi 116 df-nf 1420 |
This theorem is referenced by: nfxfr 1433 nfxfrd 1434 nfsb 1897 nfsbt 1925 hbsbd 1933 sbal1yz 1952 dvelimALT 1961 dvelimfv 1962 dvelimor 1969 nfeudv 1990 nfeuv 1993 nfceqi 2251 nfreudxy 2578 dfnfc2 3720 |
Copyright terms: Public domain | W3C validator |