| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbii | GIF version | ||
| Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| nfbii | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1492 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 3 | 1, 2 | imbi12i 239 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)) |
| 4 | 3 | albii 1492 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 5 | df-nf 1483 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 6 | df-nf 1483 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 212 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: nfxfr 1496 nfxfrd 1497 nfsb 1973 nfsbt 2003 hbsbd 2009 sbal1yz 2028 dvelimALT 2037 dvelimfv 2038 dvelimor 2045 nfeudv 2068 nfeuv 2071 nfceqi 2343 nfreudxy 2679 dfnfc2 3867 |
| Copyright terms: Public domain | W3C validator |