ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbii GIF version

Theorem nfbii 1461
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfbii.1 (𝜑𝜓)
Assertion
Ref Expression
nfbii (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)

Proof of Theorem nfbii
StepHypRef Expression
1 nfbii.1 . . . 4 (𝜑𝜓)
21albii 1458 . . . 4 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
31, 2imbi12i 238 . . 3 ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))
43albii 1458 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
5 df-nf 1449 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
6 df-nf 1449 . 2 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
74, 5, 63bitr4i 211 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfxfr  1462  nfxfrd  1463  nfsb  1934  nfsbt  1964  hbsbd  1970  sbal1yz  1989  dvelimALT  1998  dvelimfv  1999  dvelimor  2006  nfeudv  2029  nfeuv  2032  nfceqi  2304  nfreudxy  2639  dfnfc2  3807
  Copyright terms: Public domain W3C validator