ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbii GIF version

Theorem nfbii 1497
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfbii.1 (𝜑𝜓)
Assertion
Ref Expression
nfbii (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)

Proof of Theorem nfbii
StepHypRef Expression
1 nfbii.1 . . . 4 (𝜑𝜓)
21albii 1494 . . . 4 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
31, 2imbi12i 239 . . 3 ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))
43albii 1494 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
5 df-nf 1485 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
6 df-nf 1485 . 2 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
74, 5, 63bitr4i 212 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nfxfr  1498  nfxfrd  1499  nfsb  1975  nfsbt  2005  hbsbd  2011  sbal1yz  2030  dvelimALT  2039  dvelimfv  2040  dvelimor  2047  nfeudv  2070  nfeuv  2073  nfceqi  2346  nfreudxy  2682  dfnfc2  3882
  Copyright terms: Public domain W3C validator