Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfbii | GIF version |
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
nfbii | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1463 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
3 | 1, 2 | imbi12i 238 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)) |
4 | 3 | albii 1463 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) |
5 | df-nf 1454 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
6 | df-nf 1454 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 211 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfxfr 1467 nfxfrd 1468 nfsb 1939 nfsbt 1969 hbsbd 1975 sbal1yz 1994 dvelimALT 2003 dvelimfv 2004 dvelimor 2011 nfeudv 2034 nfeuv 2037 nfceqi 2308 nfreudxy 2643 dfnfc2 3814 |
Copyright terms: Public domain | W3C validator |