| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbii | GIF version | ||
| Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| nfbii | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1484 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 3 | 1, 2 | imbi12i 239 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)) |
| 4 | 3 | albii 1484 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 5 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 6 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 212 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfxfr 1488 nfxfrd 1489 nfsb 1965 nfsbt 1995 hbsbd 2001 sbal1yz 2020 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 nfeudv 2060 nfeuv 2063 nfceqi 2335 nfreudxy 2671 dfnfc2 3857 |
| Copyright terms: Public domain | W3C validator |