| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfr | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfr.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcxfr | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfr.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2346 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Ⅎwnfc 2337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cleq 2200 df-clel 2203 df-nfc 2339 |
| This theorem is referenced by: nfrab1 2688 nfrabw 2689 nfdif 3302 nfun 3337 nfin 3387 nfpw 3639 nfpr 3693 nfsn 3703 nfop 3849 nfuni 3870 nfint 3909 nfiunxy 3967 nfiinxy 3968 nfiunya 3969 nfiinya 3970 nfiu1 3971 nfii1 3972 nfopab 4128 nfopab1 4129 nfopab2 4130 nfmpt 4152 nfmpt1 4153 repizf2 4222 nfsuc 4473 nfxp 4720 nfco 4861 nfcnv 4875 nfdm 4941 nfrn 4942 nfres 4980 nfima 5049 nfiota1 5253 nffv 5609 fvmptss2 5677 fvmptssdm 5687 fvmptf 5695 ralrnmpt 5745 rexrnmpt 5746 f1ompt 5754 f1mpt 5863 fliftfun 5888 nfriota1 5930 riotaprop 5946 nfoprab1 6017 nfoprab2 6018 nfoprab3 6019 nfoprab 6020 nfmpo1 6035 nfmpo2 6036 nfmpo 6037 ovmpos 6092 ov2gf 6093 ovi3 6106 nfof 6187 nfofr 6188 nftpos 6388 nfrecs 6416 nffrec 6505 nfixpxy 6827 nfixp1 6828 xpcomco 6946 nfsup 7120 nfinf 7145 nfdju 7170 caucvgprprlemaddq 7856 nfseq 10639 nfwrd 11059 nfsum1 11782 nfsum 11783 nfcprod1 11980 nfcprod 11981 lgseisenlem2 15663 lfgrnloopen 15839 |
| Copyright terms: Public domain | W3C validator |