![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcxfr | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 | ⊢ 𝐴 = 𝐵 |
nfcxfr.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcxfr | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfr.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | nfceqi 2231 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1296 Ⅎwnfc 2222 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-17 1471 ax-ial 1479 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-cleq 2088 df-clel 2091 df-nfc 2224 |
This theorem is referenced by: nfrab1 2560 nfrabxy 2561 nfdif 3136 nfun 3171 nfin 3221 nfpw 3462 nfpr 3512 nfsn 3522 nfop 3660 nfuni 3681 nfint 3720 nfiunxy 3778 nfiinxy 3779 nfiunya 3780 nfiinya 3781 nfiu1 3782 nfii1 3783 nfopab 3928 nfopab1 3929 nfopab2 3930 nfmpt 3952 nfmpt1 3953 repizf2 4018 nfsuc 4259 nfxp 4494 nfco 4632 nfcnv 4646 nfdm 4711 nfrn 4712 nfres 4747 nfima 4815 nfiota1 5016 nffv 5350 fvmptss2 5414 fvmptssdm 5423 fvmptf 5431 ralrnmpt 5480 rexrnmpt 5481 f1ompt 5489 f1mpt 5588 fliftfun 5613 nfriota1 5653 riotaprop 5669 nfoprab1 5736 nfoprab2 5737 nfoprab3 5738 nfoprab 5739 nfmpt21 5753 nfmpt22 5754 nfmpt2 5755 ovmpt2s 5806 ov2gf 5807 ovi3 5819 nfof 5899 nfofr 5900 nftpos 6082 nfrecs 6110 nffrec 6199 nfixpxy 6514 nfixp1 6515 xpcomco 6622 nfsup 6767 nfinf 6792 nfdju 6815 caucvgprprlemaddq 7364 nfseq 10010 nfsum1 10899 nfsum 10900 |
Copyright terms: Public domain | W3C validator |