| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfr | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfr.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcxfr | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfr.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2344 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Ⅎwnfc 2335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 df-nfc 2337 |
| This theorem is referenced by: nfrab1 2686 nfrabw 2687 nfdif 3294 nfun 3329 nfin 3379 nfpw 3629 nfpr 3683 nfsn 3693 nfop 3835 nfuni 3856 nfint 3895 nfiunxy 3953 nfiinxy 3954 nfiunya 3955 nfiinya 3956 nfiu1 3957 nfii1 3958 nfopab 4112 nfopab1 4113 nfopab2 4114 nfmpt 4136 nfmpt1 4137 repizf2 4206 nfsuc 4455 nfxp 4702 nfco 4843 nfcnv 4857 nfdm 4922 nfrn 4923 nfres 4961 nfima 5030 nfiota1 5234 nffv 5586 fvmptss2 5654 fvmptssdm 5664 fvmptf 5672 ralrnmpt 5722 rexrnmpt 5723 f1ompt 5731 f1mpt 5840 fliftfun 5865 nfriota1 5907 riotaprop 5923 nfoprab1 5994 nfoprab2 5995 nfoprab3 5996 nfoprab 5997 nfmpo1 6012 nfmpo2 6013 nfmpo 6014 ovmpos 6069 ov2gf 6070 ovi3 6083 nfof 6164 nfofr 6165 nftpos 6365 nfrecs 6393 nffrec 6482 nfixpxy 6804 nfixp1 6805 xpcomco 6921 nfsup 7094 nfinf 7119 nfdju 7144 caucvgprprlemaddq 7821 nfseq 10602 nfwrd 11022 nfsum1 11667 nfsum 11668 nfcprod1 11865 nfcprod 11866 lgseisenlem2 15548 |
| Copyright terms: Public domain | W3C validator |