| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfr | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfr.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcxfr | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfr.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2344 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Ⅎwnfc 2335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 df-nfc 2337 |
| This theorem is referenced by: nfrab1 2686 nfrabw 2687 nfdif 3294 nfun 3329 nfin 3379 nfpw 3629 nfpr 3683 nfsn 3693 nfop 3835 nfuni 3856 nfint 3895 nfiunxy 3953 nfiinxy 3954 nfiunya 3955 nfiinya 3956 nfiu1 3957 nfii1 3958 nfopab 4113 nfopab1 4114 nfopab2 4115 nfmpt 4137 nfmpt1 4138 repizf2 4207 nfsuc 4456 nfxp 4703 nfco 4844 nfcnv 4858 nfdm 4923 nfrn 4924 nfres 4962 nfima 5031 nfiota1 5235 nffv 5588 fvmptss2 5656 fvmptssdm 5666 fvmptf 5674 ralrnmpt 5724 rexrnmpt 5725 f1ompt 5733 f1mpt 5842 fliftfun 5867 nfriota1 5909 riotaprop 5925 nfoprab1 5996 nfoprab2 5997 nfoprab3 5998 nfoprab 5999 nfmpo1 6014 nfmpo2 6015 nfmpo 6016 ovmpos 6071 ov2gf 6072 ovi3 6085 nfof 6166 nfofr 6167 nftpos 6367 nfrecs 6395 nffrec 6484 nfixpxy 6806 nfixp1 6807 xpcomco 6923 nfsup 7096 nfinf 7121 nfdju 7146 caucvgprprlemaddq 7823 nfseq 10604 nfwrd 11024 nfsum1 11700 nfsum 11701 nfcprod1 11898 nfcprod 11899 lgseisenlem2 15581 |
| Copyright terms: Public domain | W3C validator |