Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcxfr | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 | ⊢ 𝐴 = 𝐵 |
nfcxfr.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcxfr | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfr.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | nfceqi 2304 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: nfrab1 2645 nfrabxy 2646 nfdif 3243 nfun 3278 nfin 3328 nfpw 3572 nfpr 3626 nfsn 3636 nfop 3774 nfuni 3795 nfint 3834 nfiunxy 3892 nfiinxy 3893 nfiunya 3894 nfiinya 3895 nfiu1 3896 nfii1 3897 nfopab 4050 nfopab1 4051 nfopab2 4052 nfmpt 4074 nfmpt1 4075 repizf2 4141 nfsuc 4386 nfxp 4631 nfco 4769 nfcnv 4783 nfdm 4848 nfrn 4849 nfres 4886 nfima 4954 nfiota1 5155 nffv 5496 fvmptss2 5561 fvmptssdm 5570 fvmptf 5578 ralrnmpt 5627 rexrnmpt 5628 f1ompt 5636 f1mpt 5739 fliftfun 5764 nfriota1 5805 riotaprop 5821 nfoprab1 5891 nfoprab2 5892 nfoprab3 5893 nfoprab 5894 nfmpo1 5909 nfmpo2 5910 nfmpo 5911 ovmpos 5965 ov2gf 5966 ovi3 5978 nfof 6055 nfofr 6056 nftpos 6247 nfrecs 6275 nffrec 6364 nfixpxy 6683 nfixp1 6684 xpcomco 6792 nfsup 6957 nfinf 6982 nfdju 7007 caucvgprprlemaddq 7649 nfseq 10390 nfsum1 11297 nfsum 11298 nfcprod1 11495 nfcprod 11496 |
Copyright terms: Public domain | W3C validator |