| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfr | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfr.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcxfr | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfr.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2335 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: nfrab1 2677 nfrabw 2678 nfdif 3285 nfun 3320 nfin 3370 nfpw 3619 nfpr 3673 nfsn 3683 nfop 3825 nfuni 3846 nfint 3885 nfiunxy 3943 nfiinxy 3944 nfiunya 3945 nfiinya 3946 nfiu1 3947 nfii1 3948 nfopab 4102 nfopab1 4103 nfopab2 4104 nfmpt 4126 nfmpt1 4127 repizf2 4196 nfsuc 4444 nfxp 4691 nfco 4832 nfcnv 4846 nfdm 4911 nfrn 4912 nfres 4949 nfima 5018 nfiota1 5222 nffv 5571 fvmptss2 5639 fvmptssdm 5649 fvmptf 5657 ralrnmpt 5707 rexrnmpt 5708 f1ompt 5716 f1mpt 5821 fliftfun 5846 nfriota1 5888 riotaprop 5904 nfoprab1 5975 nfoprab2 5976 nfoprab3 5977 nfoprab 5978 nfmpo1 5993 nfmpo2 5994 nfmpo 5995 ovmpos 6050 ov2gf 6051 ovi3 6064 nfof 6145 nfofr 6146 nftpos 6346 nfrecs 6374 nffrec 6463 nfixpxy 6785 nfixp1 6786 xpcomco 6894 nfsup 7067 nfinf 7092 nfdju 7117 caucvgprprlemaddq 7792 nfseq 10566 nfwrd 10980 nfsum1 11538 nfsum 11539 nfcprod1 11736 nfcprod 11737 lgseisenlem2 15396 |
| Copyright terms: Public domain | W3C validator |