| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcxfr | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfceqi.1 | ⊢ 𝐴 = 𝐵 |
| nfcxfr.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcxfr | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfr.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | nfceqi 2368 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: nfrab1 2711 nfrabw 2712 nfdif 3325 nfun 3360 nfin 3410 nfpw 3662 nfpr 3716 nfsn 3726 nfop 3873 nfuni 3894 nfint 3933 nfiunxy 3991 nfiinxy 3992 nfiunya 3993 nfiinya 3994 nfiu1 3995 nfii1 3996 nfopab 4152 nfopab1 4153 nfopab2 4154 nfmpt 4176 nfmpt1 4177 repizf2 4246 nfsuc 4499 nfxp 4746 nfco 4887 nfcnv 4901 nfdm 4968 nfrn 4969 nfres 5007 nfima 5076 nfiota1 5280 nffv 5637 fvmptss2 5709 fvmptssdm 5719 fvmptf 5727 ralrnmpt 5777 rexrnmpt 5778 f1ompt 5786 f1mpt 5895 fliftfun 5920 nfriota1 5962 riotaprop 5980 nfoprab1 6053 nfoprab2 6054 nfoprab3 6055 nfoprab 6056 nfmpo1 6071 nfmpo2 6072 nfmpo 6073 ovmpos 6128 ov2gf 6129 ovi3 6142 nfof 6224 nfofr 6225 nftpos 6425 nfrecs 6453 nffrec 6542 nfixpxy 6864 nfixp1 6865 xpcomco 6985 nfsup 7159 nfinf 7184 nfdju 7209 caucvgprprlemaddq 7895 nfseq 10679 nfwrd 11100 nfsum1 11867 nfsum 11868 nfcprod1 12065 nfcprod 12066 lgseisenlem2 15750 lfgrnloopen 15931 |
| Copyright terms: Public domain | W3C validator |