ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcxfrd GIF version

Theorem nfcxfrd 2348
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfceqi.1 . . 3 𝐴 = 𝐵
32nfceqi 2346 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 134 1 (𝜑𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-cleq 2200  df-clel 2203  df-nfc 2339
This theorem is referenced by:  nfcsb1d  3132  nfcsbd  3137  nfcsbw  3138  nfifd  3607  nfunid  3871  nfiotadw  5254  nfriotadxy  5931  nfovd  5996  nfnegd  8303
  Copyright terms: Public domain W3C validator