ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcxfrd GIF version

Theorem nfcxfrd 2346
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfceqi.1 . . 3 𝐴 = 𝐵
32nfceqi 2344 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 134 1 (𝜑𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-cleq 2198  df-clel 2201  df-nfc 2337
This theorem is referenced by:  nfcsb1d  3124  nfcsbd  3129  nfcsbw  3130  nfifd  3598  nfunid  3857  nfiotadw  5235  nfriotadxy  5908  nfovd  5973  nfnegd  8268
  Copyright terms: Public domain W3C validator