![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcxfrd | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 | ⊢ 𝐴 = 𝐵 |
nfcxfrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcxfrd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrd.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | nfceqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | nfceqi 2328 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵) |
4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Ⅎwnfc 2319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-cleq 2182 df-clel 2185 df-nfc 2321 |
This theorem is referenced by: nfcsb1d 3103 nfcsbd 3107 nfcsbw 3108 nfifd 3576 nfunid 3831 nfiotadw 5199 nfriotadxy 5860 nfovd 5925 nfnegd 8183 |
Copyright terms: Public domain | W3C validator |