ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcxfrd GIF version

Theorem nfcxfrd 2345
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfceqi.1 𝐴 = 𝐵
nfcxfrd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfcxfrd (𝜑𝑥𝐴)

Proof of Theorem nfcxfrd
StepHypRef Expression
1 nfcxfrd.2 . 2 (𝜑𝑥𝐵)
2 nfceqi.1 . . 3 𝐴 = 𝐵
32nfceqi 2343 . 2 (𝑥𝐴𝑥𝐵)
41, 3sylibr 134 1 (𝜑𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-cleq 2197  df-clel 2200  df-nfc 2336
This theorem is referenced by:  nfcsb1d  3123  nfcsbd  3128  nfcsbw  3129  nfifd  3597  nfunid  3856  nfiotadw  5234  nfriotadxy  5907  nfovd  5972  nfnegd  8267
  Copyright terms: Public domain W3C validator