Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgen2a | GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2010. Usage of rgen2 2556 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rgen2a.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) |
Ref | Expression |
---|---|
rgen2a | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 | |
2 | eleq1 2233 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | dvelimor 2011 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥 ∈ 𝐴) |
4 | eleq1 2233 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
5 | rgen2a.1 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) | |
6 | 5 | ex 114 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑)) |
7 | 4, 6 | syl6bi 162 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑))) |
8 | 7 | pm2.43d 50 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑)) |
9 | 8 | alimi 1448 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
10 | 9 | a1d 22 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
11 | nfr 1511 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴)) | |
12 | 6 | alimi 1448 | . . . . . 6 ⊢ (∀𝑦 𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
13 | 11, 12 | syl6 33 | . . . . 5 ⊢ (Ⅎ𝑦 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
14 | 10, 13 | jaoi 711 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
15 | 3, 14 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
16 | df-ral 2453 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) | |
17 | 15, 16 | sylibr 133 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) |
18 | 17 | rgen 2523 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 ∀wal 1346 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-ral 2453 |
This theorem is referenced by: ordsucunielexmid 4515 onintexmid 4557 isoid 5789 issmo 6267 oawordriexmid 6449 ecopover 6611 ecopoverg 6614 1domsn 6797 unfiexmid 6895 axaddf 7830 axmulf 7831 subf 8121 negiso 8871 cnref1o 9609 xaddf 9801 ioof 9928 fzof 10100 xrnegiso 11225 reeff1 11663 gcdf 11927 eucalgf 12009 qredeu 12051 qnnen 12386 strsetsid 12449 hmeofn 13096 ismeti 13140 qtopbasss 13315 tgqioo 13341 peano4nninf 14039 |
Copyright terms: Public domain | W3C validator |