| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2a | GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2036. Usage of rgen2 2583 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rgen2a.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2a | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 | |
| 2 | eleq1 2259 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | dvelimor 2037 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 4 | eleq1 2259 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | rgen2a.1 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) | |
| 6 | 5 | ex 115 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑)) |
| 7 | 4, 6 | biimtrdi 163 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑))) |
| 8 | 7 | pm2.43d 50 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑)) |
| 9 | 8 | alimi 1469 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 10 | 9 | a1d 22 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
| 11 | nfr 1532 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴)) | |
| 12 | 6 | alimi 1469 | . . . . . 6 ⊢ (∀𝑦 𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 13 | 11, 12 | syl6 33 | . . . . 5 ⊢ (Ⅎ𝑦 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
| 14 | 10, 13 | jaoi 717 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
| 15 | 3, 14 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 16 | df-ral 2480 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) | |
| 17 | 15, 16 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) |
| 18 | 17 | rgen 2550 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-ral 2480 |
| This theorem is referenced by: ordsucunielexmid 4568 onintexmid 4610 isoid 5860 issmo 6355 oawordriexmid 6537 ecopover 6701 ecopoverg 6704 1domsn 6887 unfiexmid 6988 axaddf 7954 axmulf 7955 subf 8247 negiso 9001 cnref1o 9744 xaddf 9938 ioof 10065 fzof 10238 xrnegiso 11446 reeff1 11884 gcdf 12166 eucalgf 12250 qredeu 12292 qnnen 12675 strsetsid 12738 hmeofn 14646 ismeti 14690 qtopbasss 14865 tgqioo 14899 peano4nninf 15761 |
| Copyright terms: Public domain | W3C validator |