ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2a GIF version

Theorem rgen2a 2559
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2044. Usage of rgen2 2591 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
rgen2a.1 ((𝑥𝐴𝑦𝐴) → 𝜑)
Assertion
Ref Expression
rgen2a 𝑥𝐴𝑦𝐴 𝜑
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rgen2a
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1550 . . . . 5 𝑦 𝑧𝐴
2 eleq1 2267 . . . . 5 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
31, 2dvelimor 2045 . . . 4 (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴)
4 eleq1 2267 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
5 rgen2a.1 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → 𝜑)
65ex 115 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴𝜑))
74, 6biimtrdi 163 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐴 → (𝑦𝐴𝜑)))
87pm2.43d 50 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝜑))
98alimi 1477 . . . . . 6 (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦𝐴𝜑))
109a1d 22 . . . . 5 (∀𝑦 𝑦 = 𝑥 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
11 nfr 1540 . . . . . 6 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦 𝑥𝐴))
126alimi 1477 . . . . . 6 (∀𝑦 𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
1311, 12syl6 33 . . . . 5 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
1410, 13jaoi 717 . . . 4 ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴) → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
153, 14ax-mp 5 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
16 df-ral 2488 . . 3 (∀𝑦𝐴 𝜑 ↔ ∀𝑦(𝑦𝐴𝜑))
1715, 16sylibr 134 . 2 (𝑥𝐴 → ∀𝑦𝐴 𝜑)
1817rgen 2558 1 𝑥𝐴𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wal 1370   = wceq 1372  wnf 1482  wcel 2175  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-ral 2488
This theorem is referenced by:  ordsucunielexmid  4577  onintexmid  4619  isoid  5869  issmo  6364  oawordriexmid  6546  ecopover  6710  ecopoverg  6713  1domsn  6896  unfiexmid  6997  axaddf  7963  axmulf  7964  subf  8256  negiso  9010  cnref1o  9754  xaddf  9948  ioof  10075  fzof  10248  xrnegiso  11492  reeff1  11930  gcdf  12212  eucalgf  12296  qredeu  12338  qnnen  12721  strsetsid  12784  hmeofn  14692  ismeti  14736  qtopbasss  14911  tgqioo  14945  peano4nninf  15807
  Copyright terms: Public domain W3C validator