| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen2a | GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2044. Usage of rgen2 2591 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rgen2a.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen2a | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 | |
| 2 | eleq1 2267 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | dvelimor 2045 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥 ∈ 𝐴) |
| 4 | eleq1 2267 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 5 | rgen2a.1 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) | |
| 6 | 5 | ex 115 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑)) |
| 7 | 4, 6 | biimtrdi 163 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑))) |
| 8 | 7 | pm2.43d 50 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑)) |
| 9 | 8 | alimi 1477 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 10 | 9 | a1d 22 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
| 11 | nfr 1540 | . . . . . 6 ⊢ (Ⅎ𝑦 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴)) | |
| 12 | 6 | alimi 1477 | . . . . . 6 ⊢ (∀𝑦 𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 13 | 11, 12 | syl6 33 | . . . . 5 ⊢ (Ⅎ𝑦 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
| 14 | 10, 13 | jaoi 717 | . . . 4 ⊢ ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
| 15 | 3, 14 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 16 | df-ral 2488 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) | |
| 17 | 15, 16 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) |
| 18 | 17 | rgen 2558 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∀wal 1370 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-ral 2488 |
| This theorem is referenced by: ordsucunielexmid 4577 onintexmid 4619 isoid 5869 issmo 6364 oawordriexmid 6546 ecopover 6710 ecopoverg 6713 1domsn 6896 unfiexmid 6997 axaddf 7963 axmulf 7964 subf 8256 negiso 9010 cnref1o 9754 xaddf 9948 ioof 10075 fzof 10248 xrnegiso 11492 reeff1 11930 gcdf 12212 eucalgf 12296 qredeu 12338 qnnen 12721 strsetsid 12784 hmeofn 14692 ismeti 14736 qtopbasss 14911 tgqioo 14945 peano4nninf 15807 |
| Copyright terms: Public domain | W3C validator |