ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2a GIF version

Theorem rgen2a 2548
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2033. Usage of rgen2 2580 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
rgen2a.1 ((𝑥𝐴𝑦𝐴) → 𝜑)
Assertion
Ref Expression
rgen2a 𝑥𝐴𝑦𝐴 𝜑
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rgen2a
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . 5 𝑦 𝑧𝐴
2 eleq1 2256 . . . . 5 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
31, 2dvelimor 2034 . . . 4 (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴)
4 eleq1 2256 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
5 rgen2a.1 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → 𝜑)
65ex 115 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴𝜑))
74, 6biimtrdi 163 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐴 → (𝑦𝐴𝜑)))
87pm2.43d 50 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝜑))
98alimi 1466 . . . . . 6 (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦𝐴𝜑))
109a1d 22 . . . . 5 (∀𝑦 𝑦 = 𝑥 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
11 nfr 1529 . . . . . 6 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦 𝑥𝐴))
126alimi 1466 . . . . . 6 (∀𝑦 𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
1311, 12syl6 33 . . . . 5 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
1410, 13jaoi 717 . . . 4 ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴) → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
153, 14ax-mp 5 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
16 df-ral 2477 . . 3 (∀𝑦𝐴 𝜑 ↔ ∀𝑦(𝑦𝐴𝜑))
1715, 16sylibr 134 . 2 (𝑥𝐴 → ∀𝑦𝐴 𝜑)
1817rgen 2547 1 𝑥𝐴𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wal 1362   = wceq 1364  wnf 1471  wcel 2164  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-ral 2477
This theorem is referenced by:  ordsucunielexmid  4563  onintexmid  4605  isoid  5853  issmo  6341  oawordriexmid  6523  ecopover  6687  ecopoverg  6690  1domsn  6873  unfiexmid  6974  axaddf  7928  axmulf  7929  subf  8221  negiso  8974  cnref1o  9716  xaddf  9910  ioof  10037  fzof  10210  xrnegiso  11405  reeff1  11843  gcdf  12109  eucalgf  12193  qredeu  12235  qnnen  12588  strsetsid  12651  hmeofn  14470  ismeti  14514  qtopbasss  14689  tgqioo  14715  peano4nninf  15496
  Copyright terms: Public domain W3C validator