ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2a GIF version

Theorem rgen2a 2561
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2046. Usage of rgen2 2593 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
rgen2a.1 ((𝑥𝐴𝑦𝐴) → 𝜑)
Assertion
Ref Expression
rgen2a 𝑥𝐴𝑦𝐴 𝜑
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rgen2a
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . . . 5 𝑦 𝑧𝐴
2 eleq1 2269 . . . . 5 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
31, 2dvelimor 2047 . . . 4 (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴)
4 eleq1 2269 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
5 rgen2a.1 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → 𝜑)
65ex 115 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴𝜑))
74, 6biimtrdi 163 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐴 → (𝑦𝐴𝜑)))
87pm2.43d 50 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝜑))
98alimi 1479 . . . . . 6 (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦𝐴𝜑))
109a1d 22 . . . . 5 (∀𝑦 𝑦 = 𝑥 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
11 nfr 1542 . . . . . 6 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦 𝑥𝐴))
126alimi 1479 . . . . . 6 (∀𝑦 𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
1311, 12syl6 33 . . . . 5 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
1410, 13jaoi 718 . . . 4 ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴) → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
153, 14ax-mp 5 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
16 df-ral 2490 . . 3 (∀𝑦𝐴 𝜑 ↔ ∀𝑦(𝑦𝐴𝜑))
1715, 16sylibr 134 . 2 (𝑥𝐴 → ∀𝑦𝐴 𝜑)
1817rgen 2560 1 𝑥𝐴𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  wal 1371   = wceq 1373  wnf 1484  wcel 2177  wral 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202  df-ral 2490
This theorem is referenced by:  ordsucunielexmid  4587  onintexmid  4629  isoid  5892  issmo  6387  oawordriexmid  6569  ecopover  6733  ecopoverg  6736  1domsn  6929  unfiexmid  7030  axaddf  8001  axmulf  8002  subf  8294  negiso  9048  cnref1o  9792  xaddf  9986  ioof  10113  fzof  10286  xrnegiso  11648  reeff1  12086  gcdf  12368  eucalgf  12452  qredeu  12494  qnnen  12877  strsetsid  12940  hmeofn  14849  ismeti  14893  qtopbasss  15068  tgqioo  15102  peano4nninf  16084
  Copyright terms: Public domain W3C validator