ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rgen2a GIF version

Theorem rgen2a 2524
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2010. Usage of rgen2 2556 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
rgen2a.1 ((𝑥𝐴𝑦𝐴) → 𝜑)
Assertion
Ref Expression
rgen2a 𝑥𝐴𝑦𝐴 𝜑
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rgen2a
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . . . 5 𝑦 𝑧𝐴
2 eleq1 2233 . . . . 5 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
31, 2dvelimor 2011 . . . 4 (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴)
4 eleq1 2233 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
5 rgen2a.1 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → 𝜑)
65ex 114 . . . . . . . . 9 (𝑥𝐴 → (𝑦𝐴𝜑))
74, 6syl6bi 162 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐴 → (𝑦𝐴𝜑)))
87pm2.43d 50 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝜑))
98alimi 1448 . . . . . 6 (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦𝐴𝜑))
109a1d 22 . . . . 5 (∀𝑦 𝑦 = 𝑥 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
11 nfr 1511 . . . . . 6 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦 𝑥𝐴))
126alimi 1448 . . . . . 6 (∀𝑦 𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
1311, 12syl6 33 . . . . 5 (Ⅎ𝑦 𝑥𝐴 → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
1410, 13jaoi 711 . . . 4 ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑥𝐴) → (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑)))
153, 14ax-mp 5 . . 3 (𝑥𝐴 → ∀𝑦(𝑦𝐴𝜑))
16 df-ral 2453 . . 3 (∀𝑦𝐴 𝜑 ↔ ∀𝑦(𝑦𝐴𝜑))
1715, 16sylibr 133 . 2 (𝑥𝐴 → ∀𝑦𝐴 𝜑)
1817rgen 2523 1 𝑥𝐴𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  wal 1346   = wceq 1348  wnf 1453  wcel 2141  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-ral 2453
This theorem is referenced by:  ordsucunielexmid  4515  onintexmid  4557  isoid  5789  issmo  6267  oawordriexmid  6449  ecopover  6611  ecopoverg  6614  1domsn  6797  unfiexmid  6895  axaddf  7830  axmulf  7831  subf  8121  negiso  8871  cnref1o  9609  xaddf  9801  ioof  9928  fzof  10100  xrnegiso  11225  reeff1  11663  gcdf  11927  eucalgf  12009  qredeu  12051  qnnen  12386  strsetsid  12449  hmeofn  13096  ismeti  13140  qtopbasss  13315  tgqioo  13341  peano4nninf  14039
  Copyright terms: Public domain W3C validator