![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version |
Description: Old name for nfralw 2531. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1477 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfraldxy 2527 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1373 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1365 Ⅎwnf 1471 Ⅎwnfc 2323 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 |
This theorem is referenced by: nfra2xy 2536 rspc2 2876 sbcralt 3063 sbcralg 3065 raaanlem 3552 nfint 3881 nfiinxy 3940 nfpo 4333 nfso 4334 nfse 4373 nffrfor 4380 nfwe 4387 ralxpf 4809 funimaexglem 5338 fun11iun 5522 dff13f 5814 nfiso 5850 mpoeq123 5978 nfofr 6139 fmpox 6255 nfrecs 6362 xpf1o 6902 ac6sfi 6956 ismkvnex 7216 lble 8968 fzrevral 10174 nfsum1 11502 nfsum 11503 fsum2dlemstep 11580 fisumcom2 11584 nfcprod1 11700 nfcprod 11701 bezoutlemmain 12138 cnmpt21 14470 setindis 15529 bdsetindis 15531 strcollnfALT 15548 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |