![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version |
Description: Old name for nfralw 2531. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1477 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfraldxy 2527 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1373 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1365 Ⅎwnf 1471 Ⅎwnfc 2323 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 |
This theorem is referenced by: nfra2xy 2536 rspc2 2875 sbcralt 3062 sbcralg 3064 raaanlem 3551 nfint 3880 nfiinxy 3939 nfpo 4332 nfso 4333 nfse 4372 nffrfor 4379 nfwe 4386 ralxpf 4808 funimaexglem 5337 fun11iun 5521 dff13f 5813 nfiso 5849 mpoeq123 5977 nfofr 6137 fmpox 6253 nfrecs 6360 xpf1o 6900 ac6sfi 6954 ismkvnex 7214 lble 8966 fzrevral 10171 nfsum1 11499 nfsum 11500 fsum2dlemstep 11577 fisumcom2 11581 nfcprod1 11697 nfcprod 11698 bezoutlemmain 12135 cnmpt21 14459 setindis 15459 bdsetindis 15461 strcollnfALT 15478 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |