ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralxy GIF version

Theorem nfralxy 2535
Description: Old name for nfralw 2534. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfralxy.1 𝑥𝐴
nfralxy.2 𝑥𝜑
Assertion
Ref Expression
nfralxy 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfralxy
StepHypRef Expression
1 nftru 1480 . . 3 𝑦
2 nfralxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfraldxy 2530 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1373 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1474  wnfc 2326  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  nfra2xy  2539  rspc2  2879  sbcralt  3066  sbcralg  3068  raaanlem  3556  nfint  3885  nfiinxy  3944  nfpo  4337  nfso  4338  nfse  4377  nffrfor  4384  nfwe  4391  ralxpf  4813  funimaexglem  5342  fun11iun  5528  dff13f  5820  nfiso  5856  mpoeq123  5985  nfofr  6146  fmpox  6267  nfrecs  6374  xpf1o  6914  ac6sfi  6968  ismkvnex  7230  lble  8991  fzrevral  10197  nfsum1  11538  nfsum  11539  fsum2dlemstep  11616  fisumcom2  11620  nfcprod1  11736  nfcprod  11737  bezoutlemmain  12190  cnmpt21  14611  setindis  15697  bdsetindis  15699  strcollnfALT  15716  isomninnlem  15761  iswomninnlem  15780  ismkvnnlem  15783
  Copyright terms: Public domain W3C validator