Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version |
Description: Old name for nfralw 2503. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1454 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfraldxy 2499 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1352 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1344 Ⅎwnf 1448 Ⅎwnfc 2295 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: nfra2xy 2508 rspc2 2841 sbcralt 3027 sbcralg 3029 raaanlem 3514 nfint 3834 nfiinxy 3893 nfpo 4279 nfso 4280 nfse 4319 nffrfor 4326 nfwe 4333 ralxpf 4750 funimaexglem 5271 fun11iun 5453 dff13f 5738 nfiso 5774 mpoeq123 5901 nfofr 6056 fmpox 6168 nfrecs 6275 xpf1o 6810 ac6sfi 6864 ismkvnex 7119 lble 8842 fzrevral 10040 nfsum1 11297 nfsum 11298 fsum2dlemstep 11375 fisumcom2 11379 nfcprod1 11495 nfcprod 11496 bezoutlemmain 11931 cnmpt21 12941 setindis 13859 bdsetindis 13861 strcollnfALT 13878 isomninnlem 13919 iswomninnlem 13938 ismkvnnlem 13941 |
Copyright terms: Public domain | W3C validator |