| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version | ||
| Description: Old name for nfralw 2534. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1480 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfraldxy 2530 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1373 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1365 Ⅎwnf 1474 Ⅎwnfc 2326 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: nfra2xy 2539 rspc2 2879 sbcralt 3066 sbcralg 3068 raaanlem 3556 nfint 3885 nfiinxy 3944 nfpo 4337 nfso 4338 nfse 4377 nffrfor 4384 nfwe 4391 ralxpf 4813 funimaexglem 5342 fun11iun 5528 dff13f 5820 nfiso 5856 mpoeq123 5985 nfofr 6146 fmpox 6267 nfrecs 6374 xpf1o 6914 ac6sfi 6968 ismkvnex 7230 lble 8993 fzrevral 10199 nfsum1 11540 nfsum 11541 fsum2dlemstep 11618 fisumcom2 11622 nfcprod1 11738 nfcprod 11739 bezoutlemmain 12192 cnmpt21 14635 setindis 15721 bdsetindis 15723 strcollnfALT 15740 isomninnlem 15787 iswomninnlem 15806 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |