ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralxy GIF version

Theorem nfralxy 2544
Description: Old name for nfralw 2543. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfralxy.1 𝑥𝐴
nfralxy.2 𝑥𝜑
Assertion
Ref Expression
nfralxy 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfralxy
StepHypRef Expression
1 nftru 1489 . . 3 𝑦
2 nfralxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfraldxy 2539 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1382 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1374  wnf 1483  wnfc 2335  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489
This theorem is referenced by:  nfra2xy  2548  rspc2  2888  sbcralt  3075  sbcralg  3077  raaanlem  3565  nfint  3895  nfiinxy  3954  nfpo  4348  nfso  4349  nfse  4388  nffrfor  4395  nfwe  4402  ralxpf  4824  funimaexglem  5357  fun11iun  5543  dff13f  5839  nfiso  5875  mpoeq123  6004  nfofr  6165  fmpox  6286  nfrecs  6393  xpf1o  6941  ac6sfi  6995  ismkvnex  7257  lble  9020  fzrevral  10227  nfsum1  11667  nfsum  11668  fsum2dlemstep  11745  fisumcom2  11749  nfcprod1  11865  nfcprod  11866  bezoutlemmain  12319  cnmpt21  14763  setindis  15903  bdsetindis  15905  strcollnfALT  15922  isomninnlem  15969  iswomninnlem  15988  ismkvnnlem  15991
  Copyright terms: Public domain W3C validator