![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version |
Description: Old name for nfralw 2514. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1466 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfraldxy 2510 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1362 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1354 Ⅎwnf 1460 Ⅎwnfc 2306 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 |
This theorem is referenced by: nfra2xy 2519 rspc2 2854 sbcralt 3041 sbcralg 3043 raaanlem 3530 nfint 3856 nfiinxy 3915 nfpo 4303 nfso 4304 nfse 4343 nffrfor 4350 nfwe 4357 ralxpf 4775 funimaexglem 5301 fun11iun 5484 dff13f 5773 nfiso 5809 mpoeq123 5936 nfofr 6091 fmpox 6203 nfrecs 6310 xpf1o 6846 ac6sfi 6900 ismkvnex 7155 lble 8906 fzrevral 10107 nfsum1 11366 nfsum 11367 fsum2dlemstep 11444 fisumcom2 11448 nfcprod1 11564 nfcprod 11565 bezoutlemmain 12001 cnmpt21 13876 setindis 14804 bdsetindis 14806 strcollnfALT 14823 isomninnlem 14863 iswomninnlem 14882 ismkvnnlem 14885 |
Copyright terms: Public domain | W3C validator |