| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version | ||
| Description: Old name for nfralw 2543. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1489 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfraldxy 2539 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1382 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 Ⅎwnf 1483 Ⅎwnfc 2335 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: nfra2xy 2548 rspc2 2888 sbcralt 3075 sbcralg 3077 raaanlem 3565 nfint 3895 nfiinxy 3954 nfpo 4348 nfso 4349 nfse 4388 nffrfor 4395 nfwe 4402 ralxpf 4824 funimaexglem 5357 fun11iun 5543 dff13f 5839 nfiso 5875 mpoeq123 6004 nfofr 6165 fmpox 6286 nfrecs 6393 xpf1o 6941 ac6sfi 6995 ismkvnex 7257 lble 9020 fzrevral 10227 nfsum1 11667 nfsum 11668 fsum2dlemstep 11745 fisumcom2 11749 nfcprod1 11865 nfcprod 11866 bezoutlemmain 12319 cnmpt21 14763 setindis 15903 bdsetindis 15905 strcollnfALT 15922 isomninnlem 15969 iswomninnlem 15988 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |