| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version | ||
| Description: Old name for nfralw 2545. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1490 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfraldxy 2541 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1382 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 Ⅎwnf 1484 Ⅎwnfc 2337 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 |
| This theorem is referenced by: nfra2xy 2550 rspc2 2895 sbcralt 3082 sbcralg 3084 raaanlem 3573 nfint 3909 nfiinxy 3968 nfpo 4366 nfso 4367 nfse 4406 nffrfor 4413 nfwe 4420 ralxpf 4842 funimaexglem 5376 fun11iun 5565 dff13f 5862 nfiso 5898 mpoeq123 6027 nfofr 6188 fmpox 6309 nfrecs 6416 xpf1o 6966 ac6sfi 7021 ismkvnex 7283 lble 9055 fzrevral 10262 nfsum1 11782 nfsum 11783 fsum2dlemstep 11860 fisumcom2 11864 nfcprod1 11980 nfcprod 11981 bezoutlemmain 12434 cnmpt21 14878 setindis 16102 bdsetindis 16104 strcollnfALT 16121 isomninnlem 16171 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |