| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfralxy | GIF version | ||
| Description: Old name for nfralw 2543. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfralxy | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1489 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfraldxy 2539 | . 2 ⊢ (⊤ → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1382 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 Ⅎwnf 1483 Ⅎwnfc 2335 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: nfra2xy 2548 rspc2 2888 sbcralt 3075 sbcralg 3077 raaanlem 3565 nfint 3895 nfiinxy 3954 nfpo 4349 nfso 4350 nfse 4389 nffrfor 4396 nfwe 4403 ralxpf 4825 funimaexglem 5358 fun11iun 5545 dff13f 5841 nfiso 5877 mpoeq123 6006 nfofr 6167 fmpox 6288 nfrecs 6395 xpf1o 6943 ac6sfi 6997 ismkvnex 7259 lble 9022 fzrevral 10229 nfsum1 11700 nfsum 11701 fsum2dlemstep 11778 fisumcom2 11782 nfcprod1 11898 nfcprod 11899 bezoutlemmain 12352 cnmpt21 14796 setindis 15940 bdsetindis 15942 strcollnfALT 15959 isomninnlem 16006 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |