ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralxy GIF version

Theorem nfralxy 2532
Description: Old name for nfralw 2531. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfralxy.1 𝑥𝐴
nfralxy.2 𝑥𝜑
Assertion
Ref Expression
nfralxy 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfralxy
StepHypRef Expression
1 nftru 1477 . . 3 𝑦
2 nfralxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfraldxy 2527 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1373 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1471  wnfc 2323  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477
This theorem is referenced by:  nfra2xy  2536  rspc2  2876  sbcralt  3063  sbcralg  3065  raaanlem  3552  nfint  3881  nfiinxy  3940  nfpo  4333  nfso  4334  nfse  4373  nffrfor  4380  nfwe  4387  ralxpf  4809  funimaexglem  5338  fun11iun  5522  dff13f  5814  nfiso  5850  mpoeq123  5978  nfofr  6139  fmpox  6255  nfrecs  6362  xpf1o  6902  ac6sfi  6956  ismkvnex  7216  lble  8968  fzrevral  10174  nfsum1  11502  nfsum  11503  fsum2dlemstep  11580  fisumcom2  11584  nfcprod1  11700  nfcprod  11701  bezoutlemmain  12138  cnmpt21  14470  setindis  15529  bdsetindis  15531  strcollnfALT  15548  isomninnlem  15590  iswomninnlem  15609  ismkvnnlem  15612
  Copyright terms: Public domain W3C validator