ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexya GIF version

Theorem nfrexya 2511
Description: Not-free for restricted existential quantification where 𝑦 and 𝐴 are distinct. See nfrexxy 2509 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
Hypotheses
Ref Expression
nfralya.1 𝑥𝐴
nfralya.2 𝑥𝜑
Assertion
Ref Expression
nfrexya 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem nfrexya
StepHypRef Expression
1 nftru 1459 . . 3 𝑦
2 nfralya.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralya.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrexdya 2506 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1357 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1349  wnf 1453  wnfc 2299  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454
This theorem is referenced by:  nfiunya  3901  nffrec  6375  nfsup  6969  caucvgsrlemgt1  7757  nfsum1  11319  zsupcllemstep  11900  bezout  11966
  Copyright terms: Public domain W3C validator