| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrexya | GIF version | ||
| Description: Not-free for restricted existential quantification where 𝑦 and 𝐴 are distinct. See nfrexw 2544 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfralya.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralya.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexya | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1488 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralya.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralya.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdya 2541 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1381 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1373 Ⅎwnf 1482 Ⅎwnfc 2334 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 |
| This theorem is referenced by: nfiunya 3954 nffrec 6481 nfsup 7093 caucvgsrlemgt1 7907 zsupcllemstep 10370 nfsum1 11609 bezout 12274 |
| Copyright terms: Public domain | W3C validator |