![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrexya | GIF version |
Description: Not-free for restricted existential quantification where 𝑦 and 𝐴 are distinct. See nfrexxy 2426 for a version with 𝑥 and 𝑦 distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.) |
Ref | Expression |
---|---|
nfralya.1 | ⊢ Ⅎ𝑥𝐴 |
nfralya.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrexya | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1407 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfralya.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfralya.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexdya 2424 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1305 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1297 Ⅎwnf 1401 Ⅎwnfc 2222 ∃wrex 2371 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 |
This theorem is referenced by: nfiunya 3780 nffrec 6199 nfsup 6767 caucvgsrlemgt1 7437 nfsum1 10899 zsupcllemstep 11368 bezout 11427 |
Copyright terms: Public domain | W3C validator |