| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2481 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 1510 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1474 ∃wex 1506 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-rex 2481 |
| This theorem is referenced by: r19.29an 2639 nfiu1 3947 fun11iun 5528 eusvobj2 5911 fodjuomnilemdc 7219 ismkvnex 7230 prarloclem3step 7582 prmuloc2 7653 ltexprlemm 7686 caucvgprprlemaddq 7794 caucvgsrlemgt1 7881 axpre-suploclemres 7987 supinfneg 9688 infsupneg 9689 lbzbi 9709 divalglemeunn 12105 divalglemeuneg 12107 bezoutlemmain 12192 bezout 12205 lss1d 14017 pw1nct 15758 isomninnlem 15787 trirec0 15801 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |