| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2514 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 1542 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1506 ∃wex 1538 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-rex 2514 |
| This theorem is referenced by: r19.29an 2673 nfiu1 3994 fun11iun 5592 eusvobj2 5986 fodjuomnilemdc 7307 ismkvnex 7318 prarloclem3step 7679 prmuloc2 7750 ltexprlemm 7783 caucvgprprlemaddq 7891 caucvgsrlemgt1 7978 axpre-suploclemres 8084 supinfneg 9786 infsupneg 9787 lbzbi 9807 divalglemeunn 12427 divalglemeuneg 12429 bezoutlemmain 12514 bezout 12527 lss1d 14341 pw1nct 16328 isomninnlem 16357 trirec0 16371 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |