| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2491 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 1520 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-rex 2491 |
| This theorem is referenced by: r19.29an 2649 nfiu1 3963 fun11iun 5555 eusvobj2 5943 fodjuomnilemdc 7261 ismkvnex 7272 prarloclem3step 7629 prmuloc2 7700 ltexprlemm 7733 caucvgprprlemaddq 7841 caucvgsrlemgt1 7928 axpre-suploclemres 8034 supinfneg 9736 infsupneg 9737 lbzbi 9757 divalglemeunn 12307 divalglemeuneg 12309 bezoutlemmain 12394 bezout 12407 lss1d 14220 pw1nct 16081 isomninnlem 16110 trirec0 16124 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |