ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 GIF version

Theorem nfre1 2540
Description: 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1 𝑥𝑥𝐴 𝜑

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2481 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 nfe1 1510 . 2 𝑥𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1488 1 𝑥𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1474  wex 1506  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-rex 2481
This theorem is referenced by:  r19.29an  2639  nfiu1  3947  fun11iun  5528  eusvobj2  5911  fodjuomnilemdc  7219  ismkvnex  7230  prarloclem3step  7582  prmuloc2  7653  ltexprlemm  7686  caucvgprprlemaddq  7794  caucvgsrlemgt1  7881  axpre-suploclemres  7987  supinfneg  9688  infsupneg  9689  lbzbi  9709  divalglemeunn  12105  divalglemeuneg  12107  bezoutlemmain  12192  bezout  12205  lss1d  14017  pw1nct  15758  isomninnlem  15787  trirec0  15801  ismkvnnlem  15809
  Copyright terms: Public domain W3C validator