ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 GIF version

Theorem nfre1 2573
Description: 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1 𝑥𝑥𝐴 𝜑

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2514 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 nfe1 1542 . 2 𝑥𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1520 1 𝑥𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1506  wex 1538  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-rex 2514
This theorem is referenced by:  r19.29an  2673  nfiu1  3994  fun11iun  5592  eusvobj2  5986  fodjuomnilemdc  7307  ismkvnex  7318  prarloclem3step  7679  prmuloc2  7750  ltexprlemm  7783  caucvgprprlemaddq  7891  caucvgsrlemgt1  7978  axpre-suploclemres  8084  supinfneg  9786  infsupneg  9787  lbzbi  9807  divalglemeunn  12427  divalglemeuneg  12429  bezoutlemmain  12514  bezout  12527  lss1d  14341  pw1nct  16328  isomninnlem  16357  trirec0  16371  ismkvnnlem  16379
  Copyright terms: Public domain W3C validator