![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version |
Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2478 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 1507 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1471 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-rex 2478 |
This theorem is referenced by: r19.29an 2636 nfiu1 3942 fun11iun 5521 eusvobj2 5904 fodjuomnilemdc 7203 ismkvnex 7214 prarloclem3step 7556 prmuloc2 7627 ltexprlemm 7660 caucvgprprlemaddq 7768 caucvgsrlemgt1 7855 axpre-suploclemres 7961 supinfneg 9660 infsupneg 9661 lbzbi 9681 divalglemeunn 12062 divalglemeuneg 12064 bezoutlemmain 12135 bezout 12148 lss1d 13879 pw1nct 15493 isomninnlem 15520 trirec0 15534 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |