ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 GIF version

Theorem nfre1 2550
Description: 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1 𝑥𝑥𝐴 𝜑

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2491 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 nfe1 1520 . 2 𝑥𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1498 1 𝑥𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1484  wex 1516  wcel 2177  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-rex 2491
This theorem is referenced by:  r19.29an  2649  nfiu1  3963  fun11iun  5555  eusvobj2  5943  fodjuomnilemdc  7261  ismkvnex  7272  prarloclem3step  7629  prmuloc2  7700  ltexprlemm  7733  caucvgprprlemaddq  7841  caucvgsrlemgt1  7928  axpre-suploclemres  8034  supinfneg  9736  infsupneg  9737  lbzbi  9757  divalglemeunn  12307  divalglemeuneg  12309  bezoutlemmain  12394  bezout  12407  lss1d  14220  pw1nct  16081  isomninnlem  16110  trirec0  16124  ismkvnnlem  16132
  Copyright terms: Public domain W3C validator