ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfre1 GIF version

Theorem nfre1 2520
Description: 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1 𝑥𝑥𝐴 𝜑

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2461 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 nfe1 1496 . 2 𝑥𝑥(𝑥𝐴𝜑)
31, 2nfxfr 1474 1 𝑥𝑥𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1460  wex 1492  wcel 2148  wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-rex 2461
This theorem is referenced by:  r19.29an  2619  nfiu1  3918  fun11iun  5484  eusvobj2  5863  fodjuomnilemdc  7144  ismkvnex  7155  prarloclem3step  7497  prmuloc2  7568  ltexprlemm  7601  caucvgprprlemaddq  7709  caucvgsrlemgt1  7796  axpre-suploclemres  7902  supinfneg  9597  infsupneg  9598  lbzbi  9618  divalglemeunn  11928  divalglemeuneg  11930  bezoutlemmain  12001  bezout  12014  lss1d  13475  pw1nct  14837  isomninnlem  14863  trirec0  14877  ismkvnnlem  14885
  Copyright terms: Public domain W3C validator