Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version |
Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 1489 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 Ⅎwnf 1453 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-rex 2454 |
This theorem is referenced by: r19.29an 2612 nfiu1 3903 fun11iun 5463 eusvobj2 5839 fodjuomnilemdc 7120 ismkvnex 7131 prarloclem3step 7458 prmuloc2 7529 ltexprlemm 7562 caucvgprprlemaddq 7670 caucvgsrlemgt1 7757 axpre-suploclemres 7863 supinfneg 9554 infsupneg 9555 lbzbi 9575 divalglemeunn 11880 divalglemeuneg 11882 bezoutlemmain 11953 bezout 11966 pw1nct 14036 isomninnlem 14062 trirec0 14076 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |