![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version |
Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2461 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 1496 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1474 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1460 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-rex 2461 |
This theorem is referenced by: r19.29an 2619 nfiu1 3918 fun11iun 5484 eusvobj2 5863 fodjuomnilemdc 7144 ismkvnex 7155 prarloclem3step 7497 prmuloc2 7568 ltexprlemm 7601 caucvgprprlemaddq 7709 caucvgsrlemgt1 7796 axpre-suploclemres 7902 supinfneg 9597 infsupneg 9598 lbzbi 9618 divalglemeunn 11928 divalglemeuneg 11930 bezoutlemmain 12001 bezout 12014 lss1d 13475 pw1nct 14837 isomninnlem 14863 trirec0 14877 ismkvnnlem 14885 |
Copyright terms: Public domain | W3C validator |