Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version |
Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2459 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 1494 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1472 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1458 ∃wex 1490 ∈ wcel 2146 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-rex 2459 |
This theorem is referenced by: r19.29an 2617 nfiu1 3912 fun11iun 5474 eusvobj2 5851 fodjuomnilemdc 7132 ismkvnex 7143 prarloclem3step 7470 prmuloc2 7541 ltexprlemm 7574 caucvgprprlemaddq 7682 caucvgsrlemgt1 7769 axpre-suploclemres 7875 supinfneg 9566 infsupneg 9567 lbzbi 9587 divalglemeunn 11891 divalglemeuneg 11893 bezoutlemmain 11964 bezout 11977 pw1nct 14293 isomninnlem 14319 trirec0 14333 ismkvnnlem 14341 |
Copyright terms: Public domain | W3C validator |