![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb | GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
Ref | Expression |
---|---|
nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfsbxy 1958 | . . 3 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 |
3 | 2 | nfsbxy 1958 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 |
4 | ax-17 1537 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
5 | 4 | sbco2vh 1961 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
6 | 5 | nfbii 1484 | . 2 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
7 | 3, 6 | mpbi 145 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: hbsb 1965 sbco2yz 1979 sbcomxyyz 1988 hbsbd 1998 nfsb4or 2037 sb8eu 2055 nfeu 2061 cbvab 2317 cbvralf 2718 cbvrexf 2719 cbvreu 2724 cbvralsv 2742 cbvrexsv 2743 cbvrab 2758 cbvreucsf 3145 cbvrabcsf 3146 cbvopab1 4102 cbvmptf 4123 cbvmpt 4124 ralxpf 4808 rexxpf 4809 cbviota 5220 sb8iota 5222 cbvriota 5884 dfoprab4f 6246 |
Copyright terms: Public domain | W3C validator |