ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb GIF version

Theorem nfsb 1975
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsb.1 𝑧𝜑
Assertion
Ref Expression
nfsb 𝑧[𝑦 / 𝑥]𝜑
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfsb.1 . . . 4 𝑧𝜑
21nfsbxy 1971 . . 3 𝑧[𝑤 / 𝑥]𝜑
32nfsbxy 1971 . 2 𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑
4 ax-17 1550 . . . 4 (𝜑 → ∀𝑤𝜑)
54sbco2vh 1974 . . 3 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
65nfbii 1497 . 2 (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
73, 6mpbi 145 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1484  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  hbsb  1978  sbco2yz  1992  sbcomxyyz  2001  hbsbd  2011  nfsb4or  2050  sb8eu  2068  nfeu  2074  cbvab  2330  cbvralf  2731  cbvrexf  2732  cbvreu  2737  cbvralsv  2755  cbvrexsv  2756  cbvrab  2771  cbvreucsf  3162  cbvrabcsf  3163  cbvopab1  4125  cbvmptf  4146  cbvmpt  4147  ralxpf  4832  rexxpf  4833  cbviota  5246  sb8iota  5248  cbvriota  5923  dfoprab4f  6292
  Copyright terms: Public domain W3C validator