| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfsb | GIF version | ||
| Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| nfsb.1 | ⊢ Ⅎ𝑧𝜑 | 
| Ref | Expression | 
|---|---|
| nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsbxy 1961 | . . 3 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 | 
| 3 | 2 | nfsbxy 1961 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 | 
| 4 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 5 | 4 | sbco2vh 1964 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
| 6 | 5 | nfbii 1487 | . 2 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) | 
| 7 | 3, 6 | mpbi 145 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnf 1474 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: hbsb 1968 sbco2yz 1982 sbcomxyyz 1991 hbsbd 2001 nfsb4or 2040 sb8eu 2058 nfeu 2064 cbvab 2320 cbvralf 2721 cbvrexf 2722 cbvreu 2727 cbvralsv 2745 cbvrexsv 2746 cbvrab 2761 cbvreucsf 3149 cbvrabcsf 3150 cbvopab1 4106 cbvmptf 4127 cbvmpt 4128 ralxpf 4812 rexxpf 4813 cbviota 5224 sb8iota 5226 cbvriota 5888 dfoprab4f 6251 | 
| Copyright terms: Public domain | W3C validator |