| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb | GIF version | ||
| Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsbxy 1969 | . . 3 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 |
| 3 | 2 | nfsbxy 1969 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 |
| 4 | ax-17 1548 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 5 | 4 | sbco2vh 1972 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 6 | 5 | nfbii 1495 | . 2 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 7 | 3, 6 | mpbi 145 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1482 [wsb 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 |
| This theorem is referenced by: hbsb 1976 sbco2yz 1990 sbcomxyyz 1999 hbsbd 2009 nfsb4or 2048 sb8eu 2066 nfeu 2072 cbvab 2328 cbvralf 2729 cbvrexf 2730 cbvreu 2735 cbvralsv 2753 cbvrexsv 2754 cbvrab 2769 cbvreucsf 3157 cbvrabcsf 3158 cbvopab1 4116 cbvmptf 4137 cbvmpt 4138 ralxpf 4822 rexxpf 4823 cbviota 5234 sb8iota 5236 cbvriota 5900 dfoprab4f 6269 |
| Copyright terms: Public domain | W3C validator |