Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb | GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
Ref | Expression |
---|---|
nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | nfsbxy 1935 | . . 3 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 |
3 | 2 | nfsbxy 1935 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 |
4 | ax-17 1519 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
5 | 4 | sbco2vh 1938 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
6 | 5 | nfbii 1466 | . 2 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
7 | 3, 6 | mpbi 144 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1453 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: hbsb 1942 sbco2yz 1956 sbcomxyyz 1965 hbsbd 1975 nfsb4or 2014 sb8eu 2032 nfeu 2038 cbvab 2294 cbvralf 2689 cbvrexf 2690 cbvreu 2694 cbvralsv 2712 cbvrexsv 2713 cbvrab 2728 cbvreucsf 3113 cbvrabcsf 3114 cbvopab1 4062 cbvmptf 4083 cbvmpt 4084 ralxpf 4757 rexxpf 4758 cbviota 5165 sb8iota 5167 cbvriota 5819 dfoprab4f 6172 |
Copyright terms: Public domain | W3C validator |