| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb | GIF version | ||
| Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsbxy 1993 | . . 3 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 |
| 3 | 2 | nfsbxy 1993 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 |
| 4 | ax-17 1572 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 5 | 4 | sbco2vh 1996 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 6 | 5 | nfbii 1519 | . 2 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 7 | 3, 6 | mpbi 145 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: hbsb 2000 sbco2yz 2014 sbcomxyyz 2023 hbsbd 2033 nfsb4or 2072 sb8eu 2090 nfeu 2096 cbvab 2353 cbvralf 2756 cbvrexf 2757 cbvreu 2763 cbvralsv 2781 cbvrexsv 2782 cbvrab 2797 cbvreucsf 3189 cbvrabcsf 3190 cbvopab1 4156 cbvmptf 4177 cbvmpt 4178 ralxpf 4867 rexxpf 4868 cbviota 5282 sb8iota 5285 cbvriota 5965 dfoprab4f 6337 |
| Copyright terms: Public domain | W3C validator |