| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb | GIF version | ||
| Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
| Ref | Expression |
|---|---|
| nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfsbxy 1971 | . . 3 ⊢ Ⅎ𝑧[𝑤 / 𝑥]𝜑 |
| 3 | 2 | nfsbxy 1971 | . 2 ⊢ Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 |
| 4 | ax-17 1550 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 5 | 4 | sbco2vh 1974 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 6 | 5 | nfbii 1497 | . 2 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 7 | 3, 6 | mpbi 145 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: hbsb 1978 sbco2yz 1992 sbcomxyyz 2001 hbsbd 2011 nfsb4or 2050 sb8eu 2068 nfeu 2074 cbvab 2330 cbvralf 2731 cbvrexf 2732 cbvreu 2737 cbvralsv 2755 cbvrexsv 2756 cbvrab 2771 cbvreucsf 3162 cbvrabcsf 3163 cbvopab1 4125 cbvmptf 4146 cbvmpt 4147 ralxpf 4832 rexxpf 4833 cbviota 5246 sb8iota 5248 cbvriota 5923 dfoprab4f 6292 |
| Copyright terms: Public domain | W3C validator |