ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb GIF version

Theorem nfsb 1973
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsb.1 𝑧𝜑
Assertion
Ref Expression
nfsb 𝑧[𝑦 / 𝑥]𝜑
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfsb.1 . . . 4 𝑧𝜑
21nfsbxy 1969 . . 3 𝑧[𝑤 / 𝑥]𝜑
32nfsbxy 1969 . 2 𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑
4 ax-17 1548 . . . 4 (𝜑 → ∀𝑤𝜑)
54sbco2vh 1972 . . 3 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
65nfbii 1495 . 2 (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
73, 6mpbi 145 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wnf 1482  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by:  hbsb  1976  sbco2yz  1990  sbcomxyyz  1999  hbsbd  2009  nfsb4or  2048  sb8eu  2066  nfeu  2072  cbvab  2328  cbvralf  2729  cbvrexf  2730  cbvreu  2735  cbvralsv  2753  cbvrexsv  2754  cbvrab  2769  cbvreucsf  3157  cbvrabcsf  3158  cbvopab1  4116  cbvmptf  4137  cbvmpt  4138  ralxpf  4822  rexxpf  4823  cbviota  5234  sb8iota  5236  cbvriota  5900  dfoprab4f  6269
  Copyright terms: Public domain W3C validator