Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inex1 | GIF version |
Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inex1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex1 | ⊢ (𝐴 ∩ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | zfauscl 4102 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
3 | dfcleq 2159 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
4 | elin 3305 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | bibi2i 226 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | albii 1458 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
7 | 3, 6 | bitri 183 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
8 | 7 | exbii 1593 | . . 3 ⊢ (∃𝑥 𝑥 = (𝐴 ∩ 𝐵) ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
9 | 2, 8 | mpbir 145 | . 2 ⊢ ∃𝑥 𝑥 = (𝐴 ∩ 𝐵) |
10 | 9 | issetri 2735 | 1 ⊢ (𝐴 ∩ 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: inex2 4117 inex1g 4118 inuni 4134 bnd2 4152 peano5 4575 ssimaex 5547 ofmres 6104 tfrexlem 6302 elrest 12563 epttop 12730 tgrest 12809 resttopon 12811 restco 12814 cnrest2 12876 cnptopresti 12878 cnptoprest 12879 cnptoprest2 12880 txrest 12916 |
Copyright terms: Public domain | W3C validator |