![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vprc | GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vnex 4135 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
2 | isset 2744 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
3 | 1, 2 | mtbir 671 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2740 |
This theorem is referenced by: nvel 4137 intexr 4151 intnexr 4152 abnex 4448 snnex 4449 ruALT 4551 dcextest 4581 iprc 4896 snexxph 6949 elfi2 6971 fi0 6974 |
Copyright terms: Public domain | W3C validator |