![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vprc | GIF version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc | ⊢ ¬ V ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vnex 4146 | . 2 ⊢ ¬ ∃𝑥 𝑥 = V | |
2 | isset 2755 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
3 | 1, 2 | mtbir 672 | 1 ⊢ ¬ V ∈ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1363 ∃wex 1502 ∈ wcel 2158 Vcvv 2749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-v 2751 |
This theorem is referenced by: nvel 4148 intexr 4162 intnexr 4163 abnex 4459 snnex 4460 ruALT 4562 dcextest 4592 iprc 4907 snexxph 6962 elfi2 6984 fi0 6987 |
Copyright terms: Public domain | W3C validator |