ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0nn GIF version

Theorem elznn0nn 9265
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 9253 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 andi 818 . . 3 ((𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
3 df-3or 979 . . . 4 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ))
43anbi2i 457 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)))
5 nn0re 9183 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65pm4.71ri 392 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0))
7 elnn0 9176 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 orcom 728 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
97, 8bitri 184 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
109anbi2i 457 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
116, 10bitri 184 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
1211orbi1i 763 . . 3 ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
132, 4, 123bitr4i 212 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
141, 13bitri 184 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 708  w3o 977   = wceq 1353  wcel 2148  cr 7809  0cc0 7810  -cneg 8127  cn 8917  0cn0 9174  cz 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4121  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-i2m1 7915  ax-rnegex 7919
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-iota 5178  df-fv 5224  df-ov 5877  df-neg 8129  df-inn 8918  df-n0 9175  df-z 9252
This theorem is referenced by:  peano2z  9287  zindd  9369  expcl2lemap  10529  mulexpzap  10557  expaddzap  10561  expmulzap  10563  absexpzap  11084  pcid  12317  mulgsubcl  12951  mulgneg  12955
  Copyright terms: Public domain W3C validator