ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0nn GIF version

Theorem elznn0nn 8966
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 8954 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 andi 790 . . 3 ((𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
3 df-3or 944 . . . 4 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ))
43anbi2i 450 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)))
5 nn0re 8884 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65pm4.71ri 387 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0))
7 elnn0 8877 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 orcom 700 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
97, 8bitri 183 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
109anbi2i 450 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
116, 10bitri 183 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
1211orbi1i 735 . . 3 ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
132, 4, 123bitr4i 211 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
141, 13bitri 183 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wo 680  w3o 942   = wceq 1312  wcel 1461  cr 7540  0cc0 7541  -cneg 7851  cn 8624  0cn0 8875  cz 8952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-i2m1 7644  ax-rnegex 7648
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-iota 5044  df-fv 5087  df-ov 5729  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953
This theorem is referenced by:  peano2z  8988  zindd  9067  expcl2lemap  10192  mulexpzap  10220  expaddzap  10224  expmulzap  10226  absexpzap  10738
  Copyright terms: Public domain W3C validator