ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpr2ob GIF version

Theorem fnpr2ob 12983
Description: Biconditional version of fnpr2o 12982. (Contributed by Jim Kingdon, 27-Sep-2023.)
Assertion
Ref Expression
fnpr2ob ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)

Proof of Theorem fnpr2ob
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fnpr2o 12982 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
2 0ex 4160 . . . . . . . 8 ∅ ∈ V
32prid1 3728 . . . . . . 7 ∅ ∈ {∅, 1o}
4 df2o3 6488 . . . . . . 7 2o = {∅, 1o}
53, 4eleqtrri 2272 . . . . . 6 ∅ ∈ 2o
6 fndm 5357 . . . . . 6 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} = 2o)
75, 6eleqtrrid 2286 . . . . 5 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → ∅ ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
82eldm2 4864 . . . . 5 (∅ ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ↔ ∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
97, 8sylib 122 . . . 4 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → ∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
10 1n0 6490 . . . . . . . . . . 11 1o ≠ ∅
1110nesymi 2413 . . . . . . . . . 10 ¬ ∅ = 1o
12 vex 2766 . . . . . . . . . . 11 𝑘 ∈ V
132, 12opth1 4269 . . . . . . . . . 10 (⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩ → ∅ = 1o)
1411, 13mto 663 . . . . . . . . 9 ¬ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵
15 elpri 3645 . . . . . . . . 9 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩ ∨ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩))
16 orel2 727 . . . . . . . . 9 (¬ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩ → ((⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩ ∨ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩) → ⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩))
1714, 15, 16mpsyl 65 . . . . . . . 8 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩)
182, 12opth 4270 . . . . . . . 8 (⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩ ↔ (∅ = ∅ ∧ 𝑘 = 𝐴))
1917, 18sylib 122 . . . . . . 7 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (∅ = ∅ ∧ 𝑘 = 𝐴))
2019simprd 114 . . . . . 6 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝑘 = 𝐴)
2120eximi 1614 . . . . 5 (∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ∃𝑘 𝑘 = 𝐴)
22 isset 2769 . . . . 5 (𝐴 ∈ V ↔ ∃𝑘 𝑘 = 𝐴)
2321, 22sylibr 134 . . . 4 (∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝐴 ∈ V)
249, 23syl 14 . . 3 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o𝐴 ∈ V)
25 1oex 6482 . . . . . . . 8 1o ∈ V
2625prid2 3729 . . . . . . 7 1o ∈ {∅, 1o}
2726, 4eleqtrri 2272 . . . . . 6 1o ∈ 2o
2827, 6eleqtrrid 2286 . . . . 5 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → 1o ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
2925eldm2 4864 . . . . 5 (1o ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ↔ ∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
3028, 29sylib 122 . . . 4 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → ∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
3110neii 2369 . . . . . . . . . 10 ¬ 1o = ∅
3225, 12opth1 4269 . . . . . . . . . 10 (⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩ → 1o = ∅)
3331, 32mto 663 . . . . . . . . 9 ¬ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴
34 elpri 3645 . . . . . . . . . 10 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩ ∨ ⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩))
3534orcomd 730 . . . . . . . . 9 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩ ∨ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩))
36 orel2 727 . . . . . . . . 9 (¬ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩ → ((⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩ ∨ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩) → ⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩))
3733, 35, 36mpsyl 65 . . . . . . . 8 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩)
3825, 12opth 4270 . . . . . . . 8 (⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩ ↔ (1o = 1o𝑘 = 𝐵))
3937, 38sylib 122 . . . . . . 7 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (1o = 1o𝑘 = 𝐵))
4039simprd 114 . . . . . 6 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝑘 = 𝐵)
4140eximi 1614 . . . . 5 (∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ∃𝑘 𝑘 = 𝐵)
42 isset 2769 . . . . 5 (𝐵 ∈ V ↔ ∃𝑘 𝑘 = 𝐵)
4341, 42sylibr 134 . . . 4 (∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝐵 ∈ V)
4430, 43syl 14 . . 3 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o𝐵 ∈ V)
4524, 44jca 306 . 2 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
461, 45impbii 126 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  c0 3450  {cpr 3623  cop 3625  dom cdm 4663   Fn wfn 5253  1oc1o 6467  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260  df-fn 5261  df-1o 6474  df-2o 6475
This theorem is referenced by:  xpsfrnel2  12989
  Copyright terms: Public domain W3C validator