ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpr2ob GIF version

Theorem fnpr2ob 12764
Description: Biconditional version of fnpr2o 12763. (Contributed by Jim Kingdon, 27-Sep-2023.)
Assertion
Ref Expression
fnpr2ob ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)

Proof of Theorem fnpr2ob
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fnpr2o 12763 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
2 0ex 4132 . . . . . . . 8 ∅ ∈ V
32prid1 3700 . . . . . . 7 ∅ ∈ {∅, 1o}
4 df2o3 6433 . . . . . . 7 2o = {∅, 1o}
53, 4eleqtrri 2253 . . . . . 6 ∅ ∈ 2o
6 fndm 5317 . . . . . 6 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} = 2o)
75, 6eleqtrrid 2267 . . . . 5 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → ∅ ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
82eldm2 4827 . . . . 5 (∅ ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ↔ ∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
97, 8sylib 122 . . . 4 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → ∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
10 1n0 6435 . . . . . . . . . . 11 1o ≠ ∅
1110nesymi 2393 . . . . . . . . . 10 ¬ ∅ = 1o
12 vex 2742 . . . . . . . . . . 11 𝑘 ∈ V
132, 12opth1 4238 . . . . . . . . . 10 (⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩ → ∅ = 1o)
1411, 13mto 662 . . . . . . . . 9 ¬ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵
15 elpri 3617 . . . . . . . . 9 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩ ∨ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩))
16 orel2 726 . . . . . . . . 9 (¬ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩ → ((⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩ ∨ ⟨∅, 𝑘⟩ = ⟨1o, 𝐵⟩) → ⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩))
1714, 15, 16mpsyl 65 . . . . . . . 8 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩)
182, 12opth 4239 . . . . . . . 8 (⟨∅, 𝑘⟩ = ⟨∅, 𝐴⟩ ↔ (∅ = ∅ ∧ 𝑘 = 𝐴))
1917, 18sylib 122 . . . . . . 7 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (∅ = ∅ ∧ 𝑘 = 𝐴))
2019simprd 114 . . . . . 6 (⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝑘 = 𝐴)
2120eximi 1600 . . . . 5 (∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ∃𝑘 𝑘 = 𝐴)
22 isset 2745 . . . . 5 (𝐴 ∈ V ↔ ∃𝑘 𝑘 = 𝐴)
2321, 22sylibr 134 . . . 4 (∃𝑘⟨∅, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝐴 ∈ V)
249, 23syl 14 . . 3 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o𝐴 ∈ V)
25 1oex 6427 . . . . . . . 8 1o ∈ V
2625prid2 3701 . . . . . . 7 1o ∈ {∅, 1o}
2726, 4eleqtrri 2253 . . . . . 6 1o ∈ 2o
2827, 6eleqtrrid 2267 . . . . 5 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → 1o ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
2925eldm2 4827 . . . . 5 (1o ∈ dom {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ↔ ∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
3028, 29sylib 122 . . . 4 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → ∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
3110neii 2349 . . . . . . . . . 10 ¬ 1o = ∅
3225, 12opth1 4238 . . . . . . . . . 10 (⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩ → 1o = ∅)
3331, 32mto 662 . . . . . . . . 9 ¬ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴
34 elpri 3617 . . . . . . . . . 10 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩ ∨ ⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩))
3534orcomd 729 . . . . . . . . 9 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩ ∨ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩))
36 orel2 726 . . . . . . . . 9 (¬ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩ → ((⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩ ∨ ⟨1o, 𝑘⟩ = ⟨∅, 𝐴⟩) → ⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩))
3733, 35, 36mpsyl 65 . . . . . . . 8 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩)
3825, 12opth 4239 . . . . . . . 8 (⟨1o, 𝑘⟩ = ⟨1o, 𝐵⟩ ↔ (1o = 1o𝑘 = 𝐵))
3937, 38sylib 122 . . . . . . 7 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (1o = 1o𝑘 = 𝐵))
4039simprd 114 . . . . . 6 (⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝑘 = 𝐵)
4140eximi 1600 . . . . 5 (∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → ∃𝑘 𝑘 = 𝐵)
42 isset 2745 . . . . 5 (𝐵 ∈ V ↔ ∃𝑘 𝑘 = 𝐵)
4341, 42sylibr 134 . . . 4 (∃𝑘⟨1o, 𝑘⟩ ∈ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → 𝐵 ∈ V)
4430, 43syl 14 . . 3 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o𝐵 ∈ V)
4524, 44jca 306 . 2 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
461, 45impbii 126 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 708   = wceq 1353  wex 1492  wcel 2148  Vcvv 2739  c0 3424  {cpr 3595  cop 3597  dom cdm 4628   Fn wfn 5213  1oc1o 6412  2oc2o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220  df-fn 5221  df-1o 6419  df-2o 6420
This theorem is referenced by:  xpsfrnel2  12770
  Copyright terms: Public domain W3C validator