ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sblimv GIF version

Theorem sblimv 1941
Description: Version of sblim 2008 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 19-Jan-2018.)
Hypothesis
Ref Expression
sblimv.1 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
sblimv ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sblimv
StepHypRef Expression
1 sbimv 1940 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sblimv.1 . . . 4 (𝜓 → ∀𝑥𝜓)
32sbh 1822 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
43imbi2i 226 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
51, 4bitri 184 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-sb 1809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator