| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sblimv | GIF version | ||
| Description: Version of sblim 1976 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 19-Jan-2018.) |
| Ref | Expression |
|---|---|
| sblimv.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| sblimv | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbimv 1908 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sblimv.1 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | 2 | sbh 1790 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 4 | 3 | imbi2i 226 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |