| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1612 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) | 
| 3 | 2 | exlimiv 1612 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: cgsex2g 2799 cgsex4g 2800 opabss 4097 copsexg 4277 elopab 4292 epelg 4325 0nelelxp 4692 elvvuni 4727 optocl 4739 xpsspw 4775 relopabi 4791 relop 4816 elreldm 4892 xpmlem 5090 dfco2a 5170 unielrel 5197 oprabid 5954 1stval2 6213 2ndval2 6214 xp1st 6223 xp2nd 6224 poxp 6290 rntpos 6315 dftpos4 6321 tpostpos 6322 tfrlem7 6375 th3qlem2 6697 ener 6838 domtr 6844 unen 6875 xpsnen 6880 mapen 6907 ltdcnq 7464 archnqq 7484 enq0tr 7501 nqnq0pi 7505 nqnq0 7508 nqpnq0nq 7520 nqnq0a 7521 nqnq0m 7522 nq0m0r 7523 nq0a0 7524 nq02m 7532 prarloc 7570 axaddcl 7931 axmulcl 7933 hashfacen 10928 fsumdvdsmul 15227 bj-inex 15553 | 
| Copyright terms: Public domain | W3C validator |