| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1620 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1620 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1471 ax-ie2 1516 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2807 cgsex4g 2808 opabss 4107 copsexg 4287 elopab 4303 epelg 4336 0nelelxp 4703 elvvuni 4738 optocl 4750 xpsspw 4786 relopabi 4802 relop 4827 elreldm 4903 xpmlem 5102 dfco2a 5182 unielrel 5209 oprabid 5975 1stval2 6240 2ndval2 6241 xp1st 6250 xp2nd 6251 poxp 6317 rntpos 6342 dftpos4 6348 tpostpos 6349 tfrlem7 6402 th3qlem2 6724 ener 6870 domtr 6876 unen 6907 xpsnen 6915 mapen 6942 ltdcnq 7509 archnqq 7529 enq0tr 7546 nqnq0pi 7550 nqnq0 7553 nqpnq0nq 7565 nqnq0a 7566 nqnq0m 7567 nq0m0r 7568 nq0a0 7569 nq02m 7577 prarloc 7615 axaddcl 7976 axmulcl 7978 hashfacen 10979 fundm2domnop0 10988 fsumdvdsmul 15405 bj-inex 15776 |
| Copyright terms: Public domain | W3C validator |