| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1644 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1644 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2836 cgsex4g 2837 opabss 4147 copsexg 4329 elopab 4345 epelg 4380 0nelelxp 4747 elvvuni 4782 optocl 4794 xpsspw 4830 relopabi 4846 relop 4871 reldmm 4941 elreldm 4949 xpmlem 5148 dfco2a 5228 unielrel 5255 oprabid 6032 1stval2 6299 2ndval2 6300 xp1st 6309 xp2nd 6310 poxp 6376 rntpos 6401 dftpos4 6407 tpostpos 6408 tfrlem7 6461 th3qlem2 6783 ener 6929 domtr 6935 unen 6967 xpsnen 6976 mapen 7003 ltdcnq 7580 archnqq 7600 enq0tr 7617 nqnq0pi 7621 nqnq0 7624 nqpnq0nq 7636 nqnq0a 7637 nqnq0m 7638 nq0m0r 7639 nq0a0 7640 nq02m 7648 prarloc 7686 axaddcl 8047 axmulcl 8049 hashfacen 11053 fundm2domnop0 11062 fsumdvdsmul 15659 bj-inex 16228 |
| Copyright terms: Public domain | W3C validator |