| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1620 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1620 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1471 ax-ie2 1516 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2807 cgsex4g 2808 opabss 4107 copsexg 4287 elopab 4302 epelg 4335 0nelelxp 4702 elvvuni 4737 optocl 4749 xpsspw 4785 relopabi 4801 relop 4826 elreldm 4902 xpmlem 5100 dfco2a 5180 unielrel 5207 oprabid 5966 1stval2 6231 2ndval2 6232 xp1st 6241 xp2nd 6242 poxp 6308 rntpos 6333 dftpos4 6339 tpostpos 6340 tfrlem7 6393 th3qlem2 6715 ener 6856 domtr 6862 unen 6893 xpsnen 6898 mapen 6925 ltdcnq 7492 archnqq 7512 enq0tr 7529 nqnq0pi 7533 nqnq0 7536 nqpnq0nq 7548 nqnq0a 7549 nqnq0m 7550 nq0m0r 7551 nq0a0 7552 nq02m 7560 prarloc 7598 axaddcl 7959 axmulcl 7961 hashfacen 10962 fsumdvdsmul 15381 bj-inex 15707 |
| Copyright terms: Public domain | W3C validator |