![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1609 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1609 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: cgsex2g 2796 cgsex4g 2797 opabss 4094 copsexg 4274 elopab 4289 epelg 4322 0nelelxp 4689 elvvuni 4724 optocl 4736 xpsspw 4772 relopabi 4788 relop 4813 elreldm 4889 xpmlem 5087 dfco2a 5167 unielrel 5194 oprabid 5951 1stval2 6210 2ndval2 6211 xp1st 6220 xp2nd 6221 poxp 6287 rntpos 6312 dftpos4 6318 tpostpos 6319 tfrlem7 6372 th3qlem2 6694 ener 6835 domtr 6841 unen 6872 xpsnen 6877 mapen 6904 ltdcnq 7459 archnqq 7479 enq0tr 7496 nqnq0pi 7500 nqnq0 7503 nqpnq0nq 7515 nqnq0a 7516 nqnq0m 7517 nq0m0r 7518 nq0a0 7519 nq02m 7527 prarloc 7565 axaddcl 7926 axmulcl 7928 hashfacen 10910 bj-inex 15469 |
Copyright terms: Public domain | W3C validator |