Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1586 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1586 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1437 ax-ie2 1482 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: cgsex2g 2762 cgsex4g 2763 opabss 4046 copsexg 4222 elopab 4236 epelg 4268 0nelelxp 4633 elvvuni 4668 optocl 4680 xpsspw 4716 relopabi 4730 relop 4754 elreldm 4830 xpmlem 5024 dfco2a 5104 unielrel 5131 oprabid 5874 1stval2 6123 2ndval2 6124 xp1st 6133 xp2nd 6134 poxp 6200 rntpos 6225 dftpos4 6231 tpostpos 6232 tfrlem7 6285 th3qlem2 6604 ener 6745 domtr 6751 unen 6782 xpsnen 6787 mapen 6812 ltdcnq 7338 archnqq 7358 enq0tr 7375 nqnq0pi 7379 nqnq0 7382 nqpnq0nq 7394 nqnq0a 7395 nqnq0m 7396 nq0m0r 7397 nq0a0 7398 nq02m 7406 prarloc 7444 axaddcl 7805 axmulcl 7807 hashfacen 10749 bj-inex 13789 |
Copyright terms: Public domain | W3C validator |