| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1622 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1622 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2810 cgsex4g 2811 opabss 4116 copsexg 4296 elopab 4312 epelg 4345 0nelelxp 4712 elvvuni 4747 optocl 4759 xpsspw 4795 relopabi 4811 relop 4836 elreldm 4913 xpmlem 5112 dfco2a 5192 unielrel 5219 oprabid 5989 1stval2 6254 2ndval2 6255 xp1st 6264 xp2nd 6265 poxp 6331 rntpos 6356 dftpos4 6362 tpostpos 6363 tfrlem7 6416 th3qlem2 6738 ener 6884 domtr 6890 unen 6922 xpsnen 6931 mapen 6958 ltdcnq 7530 archnqq 7550 enq0tr 7567 nqnq0pi 7571 nqnq0 7574 nqpnq0nq 7586 nqnq0a 7587 nqnq0m 7588 nq0m0r 7589 nq0a0 7590 nq02m 7598 prarloc 7636 axaddcl 7997 axmulcl 7999 hashfacen 11003 fundm2domnop0 11012 fsumdvdsmul 15538 bj-inex 15981 |
| Copyright terms: Public domain | W3C validator |