| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
| Ref | Expression |
|---|---|
| exlimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | exlimiv 1612 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
| 3 | 2 | exlimiv 1612 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cgsex2g 2799 cgsex4g 2800 opabss 4098 copsexg 4278 elopab 4293 epelg 4326 0nelelxp 4693 elvvuni 4728 optocl 4740 xpsspw 4776 relopabi 4792 relop 4817 elreldm 4893 xpmlem 5091 dfco2a 5171 unielrel 5198 oprabid 5957 1stval2 6222 2ndval2 6223 xp1st 6232 xp2nd 6233 poxp 6299 rntpos 6324 dftpos4 6330 tpostpos 6331 tfrlem7 6384 th3qlem2 6706 ener 6847 domtr 6853 unen 6884 xpsnen 6889 mapen 6916 ltdcnq 7481 archnqq 7501 enq0tr 7518 nqnq0pi 7522 nqnq0 7525 nqpnq0nq 7537 nqnq0a 7538 nqnq0m 7539 nq0m0r 7540 nq0a0 7541 nq02m 7549 prarloc 7587 axaddcl 7948 axmulcl 7950 hashfacen 10945 fsumdvdsmul 15311 bj-inex 15637 |
| Copyright terms: Public domain | W3C validator |