![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimivv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | exlimiv 1609 | . 2 ⊢ (∃𝑦𝜑 → 𝜓) |
3 | 2 | exlimiv 1609 | 1 ⊢ (∃𝑥∃𝑦𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: cgsex2g 2796 cgsex4g 2797 opabss 4093 copsexg 4273 elopab 4288 epelg 4321 0nelelxp 4688 elvvuni 4723 optocl 4735 xpsspw 4771 relopabi 4787 relop 4812 elreldm 4888 xpmlem 5086 dfco2a 5166 unielrel 5193 oprabid 5950 1stval2 6208 2ndval2 6209 xp1st 6218 xp2nd 6219 poxp 6285 rntpos 6310 dftpos4 6316 tpostpos 6317 tfrlem7 6370 th3qlem2 6692 ener 6833 domtr 6839 unen 6870 xpsnen 6875 mapen 6902 ltdcnq 7457 archnqq 7477 enq0tr 7494 nqnq0pi 7498 nqnq0 7501 nqpnq0nq 7513 nqnq0a 7514 nqnq0m 7515 nq0m0r 7516 nq0a0 7517 nq02m 7525 prarloc 7563 axaddcl 7924 axmulcl 7926 hashfacen 10907 bj-inex 15399 |
Copyright terms: Public domain | W3C validator |