![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zeoxor | GIF version |
Description: An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.) |
Ref | Expression |
---|---|
zeoxor | ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zeo3 11410 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) | |
2 | pm3.24 665 | . . 3 ⊢ ¬ (2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑁) | |
3 | df-xor 1337 | . . 3 ⊢ ((2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁) ↔ ((2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁) ∧ ¬ (2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑁))) | |
4 | 2, 3 | mpbiran2 908 | . 2 ⊢ ((2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁) ↔ (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
5 | 1, 4 | sylibr 133 | 1 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 680 ⊻ wxo 1336 ∈ wcel 1463 class class class wbr 3895 2c2 8678 ℤcz 8955 ∥ cdvds 11338 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7633 ax-resscn 7634 ax-1cn 7635 ax-1re 7636 ax-icn 7637 ax-addcl 7638 ax-addrcl 7639 ax-mulcl 7640 ax-mulrcl 7641 ax-addcom 7642 ax-mulcom 7643 ax-addass 7644 ax-mulass 7645 ax-distr 7646 ax-i2m1 7647 ax-0lt1 7648 ax-1rid 7649 ax-0id 7650 ax-rnegex 7651 ax-precex 7652 ax-cnre 7653 ax-pre-ltirr 7654 ax-pre-ltwlin 7655 ax-pre-lttrn 7656 ax-pre-apti 7657 ax-pre-ltadd 7658 ax-pre-mulgt0 7659 ax-pre-mulext 7660 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-xor 1337 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-id 4175 df-po 4178 df-iso 4179 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-pnf 7723 df-mnf 7724 df-xr 7725 df-ltxr 7726 df-le 7727 df-sub 7855 df-neg 7856 df-reap 8252 df-ap 8259 df-div 8343 df-inn 8628 df-2 8686 df-n0 8879 df-z 8956 df-dvds 11339 |
This theorem is referenced by: zeo4 11412 |
Copyright terms: Public domain | W3C validator |