ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabnc GIF version

Theorem rabnc 3524
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3476 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)}
2 rabeq0 3521 . . 3 ({𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜑))
3 pm3.24 698 . . . 4 ¬ (𝜑 ∧ ¬ 𝜑)
43a1i 9 . . 3 (𝑥𝐴 → ¬ (𝜑 ∧ ¬ 𝜑))
52, 4mprgbir 2588 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅
61, 5eqtri 2250 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1395  wcel 2200  {crab 2512  cin 3196  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-nul 3492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator