ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabnc GIF version

Theorem rabnc 3479
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3431 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)}
2 rabeq0 3476 . . 3 ({𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜑))
3 pm3.24 694 . . . 4 ¬ (𝜑 ∧ ¬ 𝜑)
43a1i 9 . . 3 (𝑥𝐴 → ¬ (𝜑 ∧ ¬ 𝜑))
52, 4mprgbir 2552 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅
61, 5eqtri 2214 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wcel 2164  {crab 2476  cin 3152  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator