| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabnc | GIF version | ||
| Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| rabnc | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab 3453 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} | |
| 2 | rabeq0 3498 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜑)) | |
| 3 | pm3.24 695 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ (𝜑 ∧ ¬ 𝜑)) |
| 5 | 2, 4 | mprgbir 2566 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ |
| 6 | 1, 5 | eqtri 2228 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1373 ∈ wcel 2178 {crab 2490 ∩ cin 3173 ∅c0 3468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-dif 3176 df-in 3180 df-nul 3469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |