ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabnc GIF version

Theorem rabnc 3342
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3295 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)}
2 rabeq0 3339 . . 3 ({𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜑))
3 pm3.24 668 . . . 4 ¬ (𝜑 ∧ ¬ 𝜑)
43a1i 9 . . 3 (𝑥𝐴 → ¬ (𝜑 ∧ ¬ 𝜑))
52, 4mprgbir 2449 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅
61, 5eqtri 2120 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1299  wcel 1448  {crab 2379  cin 3020  c0 3310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rab 2384  df-v 2643  df-dif 3023  df-in 3027  df-nul 3311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator