| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabnc | GIF version | ||
| Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| rabnc | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab 3435 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} | |
| 2 | rabeq0 3480 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜑)) | |
| 3 | pm3.24 694 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ (𝜑 ∧ ¬ 𝜑)) |
| 5 | 2, 4 | mprgbir 2555 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ |
| 6 | 1, 5 | eqtri 2217 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {crab 2479 ∩ cin 3156 ∅c0 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-nul 3451 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |