ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unennn GIF version

Theorem unennn 12352
Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
Assertion
Ref Expression
unennn ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)

Proof of Theorem unennn
StepHypRef Expression
1 oddennn 12347 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
21ensymi 6760 . . . . 5 ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
3 entr 6762 . . . . 5 ((𝐴 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
42, 3mpan2 423 . . . 4 (𝐴 ≈ ℕ → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
543ad2ant1 1013 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
6 evenennn 12348 . . . . . 6 {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ
76ensymi 6760 . . . . 5 ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}
8 entr 6762 . . . . 5 ((𝐵 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
97, 8mpan2 423 . . . 4 (𝐵 ≈ ℕ → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
1093ad2ant2 1014 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
11 simp3 994 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
12 inrab 3399 . . . . 5 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)}
13 pm3.24 688 . . . . . . . 8 ¬ (2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧)
14 ancom 264 . . . . . . . 8 ((2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) ↔ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧))
1513, 14mtbi 665 . . . . . . 7 ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)
1615rgenw 2525 . . . . . 6 𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)
17 rabeq0 3444 . . . . . 6 ({𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ ↔ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧))
1816, 17mpbir 145 . . . . 5 {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅
1912, 18eqtri 2191 . . . 4 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅
2019a1i 9 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)
21 unen 6794 . . 3 (((𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) ∧ ((𝐴𝐵) = ∅ ∧ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)) → (𝐴𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}))
225, 10, 11, 20, 21syl22anc 1234 . 2 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}))
23 unrab 3398 . . 3 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)}
24 rabid2 2646 . . . 4 (ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} ↔ ∀𝑧 ∈ ℕ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧))
25 nnz 9231 . . . . . 6 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
26 2z 9240 . . . . . . 7 2 ∈ ℤ
27 zdvdsdc 11774 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 2 ∥ 𝑧)
2826, 27mpan 422 . . . . . 6 (𝑧 ∈ ℤ → DECID 2 ∥ 𝑧)
29 exmiddc 831 . . . . . 6 (DECID 2 ∥ 𝑧 → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧))
3025, 28, 293syl 17 . . . . 5 (𝑧 ∈ ℕ → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧))
3130orcomd 724 . . . 4 (𝑧 ∈ ℕ → (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧))
3224, 31mprgbir 2528 . . 3 ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)}
3323, 32eqtr4i 2194 . 2 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ℕ
3422, 33breqtrdi 4030 1 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  wral 2448  {crab 2452  cun 3119  cin 3120  c0 3414   class class class wbr 3989  cen 6716  cn 8878  2c2 8929  cz 9212  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226  df-mod 10279  df-dvds 11750
This theorem is referenced by:  znnen  12353
  Copyright terms: Public domain W3C validator