ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unennn GIF version

Theorem unennn 12687
Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
Assertion
Ref Expression
unennn ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)

Proof of Theorem unennn
StepHypRef Expression
1 oddennn 12682 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
21ensymi 6859 . . . . 5 ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
3 entr 6861 . . . . 5 ((𝐴 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
42, 3mpan2 425 . . . 4 (𝐴 ≈ ℕ → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
543ad2ant1 1020 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
6 evenennn 12683 . . . . . 6 {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ
76ensymi 6859 . . . . 5 ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}
8 entr 6861 . . . . 5 ((𝐵 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
97, 8mpan2 425 . . . 4 (𝐵 ≈ ℕ → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
1093ad2ant2 1021 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
11 simp3 1001 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
12 inrab 3444 . . . . 5 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)}
13 pm3.24 694 . . . . . . . 8 ¬ (2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧)
14 ancom 266 . . . . . . . 8 ((2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) ↔ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧))
1513, 14mtbi 671 . . . . . . 7 ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)
1615rgenw 2560 . . . . . 6 𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)
17 rabeq0 3489 . . . . . 6 ({𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ ↔ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧))
1816, 17mpbir 146 . . . . 5 {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅
1912, 18eqtri 2225 . . . 4 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅
2019a1i 9 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)
21 unen 6893 . . 3 (((𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) ∧ ((𝐴𝐵) = ∅ ∧ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)) → (𝐴𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}))
225, 10, 11, 20, 21syl22anc 1250 . 2 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}))
23 unrab 3443 . . 3 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)}
24 rabid2 2682 . . . 4 (ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} ↔ ∀𝑧 ∈ ℕ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧))
25 nnz 9373 . . . . . 6 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
26 2z 9382 . . . . . . 7 2 ∈ ℤ
27 zdvdsdc 12042 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 2 ∥ 𝑧)
2826, 27mpan 424 . . . . . 6 (𝑧 ∈ ℤ → DECID 2 ∥ 𝑧)
29 exmiddc 837 . . . . . 6 (DECID 2 ∥ 𝑧 → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧))
3025, 28, 293syl 17 . . . . 5 (𝑧 ∈ ℕ → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧))
3130orcomd 730 . . . 4 (𝑧 ∈ ℕ → (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧))
3224, 31mprgbir 2563 . . 3 ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)}
3323, 32eqtr4i 2228 . 2 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ℕ
3422, 33breqtrdi 4084 1 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1372  wcel 2175  wral 2483  {crab 2487  cun 3163  cin 3164  c0 3459   class class class wbr 4043  cen 6815  cn 9018  2c2 9069  cz 9354  cdvds 12017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-er 6610  df-en 6818  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-q 9723  df-rp 9758  df-fl 10394  df-mod 10449  df-dvds 12018
This theorem is referenced by:  znnen  12688
  Copyright terms: Public domain W3C validator