![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unennn | GIF version |
Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.) |
Ref | Expression |
---|---|
unennn | ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddennn 12549 | . . . . . 6 ⊢ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ | |
2 | 1 | ensymi 6836 | . . . . 5 ⊢ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
3 | entr 6838 | . . . . 5 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) | |
4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ≈ ℕ → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) |
5 | 4 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) |
6 | evenennn 12550 | . . . . . 6 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ | |
7 | 6 | ensymi 6836 | . . . . 5 ⊢ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} |
8 | entr 6838 | . . . . 5 ⊢ ((𝐵 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) | |
9 | 7, 8 | mpan2 425 | . . . 4 ⊢ (𝐵 ≈ ℕ → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
10 | 9 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
11 | simp3 1001 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
12 | inrab 3431 | . . . . 5 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} | |
13 | pm3.24 694 | . . . . . . . 8 ⊢ ¬ (2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) | |
14 | ancom 266 | . . . . . . . 8 ⊢ ((2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) ↔ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)) | |
15 | 13, 14 | mtbi 671 | . . . . . . 7 ⊢ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧) |
16 | 15 | rgenw 2549 | . . . . . 6 ⊢ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧) |
17 | rabeq0 3476 | . . . . . 6 ⊢ ({𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ ↔ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)) | |
18 | 16, 17 | mpbir 146 | . . . . 5 ⊢ {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ |
19 | 12, 18 | eqtri 2214 | . . . 4 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅ |
20 | 19 | a1i 9 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅) |
21 | unen 6870 | . . 3 ⊢ (((𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)) → (𝐴 ∪ 𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})) | |
22 | 5, 10, 11, 20, 21 | syl22anc 1250 | . 2 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})) |
23 | unrab 3430 | . . 3 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} | |
24 | rabid2 2671 | . . . 4 ⊢ (ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} ↔ ∀𝑧 ∈ ℕ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)) | |
25 | nnz 9336 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℤ) | |
26 | 2z 9345 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
27 | zdvdsdc 11955 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 2 ∥ 𝑧) | |
28 | 26, 27 | mpan 424 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → DECID 2 ∥ 𝑧) |
29 | exmiddc 837 | . . . . . 6 ⊢ (DECID 2 ∥ 𝑧 → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧)) | |
30 | 25, 28, 29 | 3syl 17 | . . . . 5 ⊢ (𝑧 ∈ ℕ → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧)) |
31 | 30 | orcomd 730 | . . . 4 ⊢ (𝑧 ∈ ℕ → (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)) |
32 | 24, 31 | mprgbir 2552 | . . 3 ⊢ ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} |
33 | 23, 32 | eqtr4i 2217 | . 2 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ℕ |
34 | 22, 33 | breqtrdi 4070 | 1 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 {crab 2476 ∪ cun 3151 ∩ cin 3152 ∅c0 3446 class class class wbr 4029 ≈ cen 6792 ℕcn 8982 2c2 9033 ℤcz 9317 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-er 6587 df-en 6795 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-q 9685 df-rp 9720 df-fl 10339 df-mod 10394 df-dvds 11931 |
This theorem is referenced by: znnen 12555 |
Copyright terms: Public domain | W3C validator |