| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unennn | GIF version | ||
| Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.) |
| Ref | Expression |
|---|---|
| unennn | ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddennn 12958 | . . . . . 6 ⊢ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ | |
| 2 | 1 | ensymi 6932 | . . . . 5 ⊢ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| 3 | entr 6934 | . . . . 5 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) | |
| 4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ≈ ℕ → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) |
| 5 | 4 | 3ad2ant1 1042 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) |
| 6 | evenennn 12959 | . . . . . 6 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ | |
| 7 | 6 | ensymi 6932 | . . . . 5 ⊢ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} |
| 8 | entr 6934 | . . . . 5 ⊢ ((𝐵 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) | |
| 9 | 7, 8 | mpan2 425 | . . . 4 ⊢ (𝐵 ≈ ℕ → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
| 10 | 9 | 3ad2ant2 1043 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
| 11 | simp3 1023 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
| 12 | inrab 3476 | . . . . 5 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} | |
| 13 | pm3.24 698 | . . . . . . . 8 ⊢ ¬ (2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) | |
| 14 | ancom 266 | . . . . . . . 8 ⊢ ((2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) ↔ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)) | |
| 15 | 13, 14 | mtbi 674 | . . . . . . 7 ⊢ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧) |
| 16 | 15 | rgenw 2585 | . . . . . 6 ⊢ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧) |
| 17 | rabeq0 3521 | . . . . . 6 ⊢ ({𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ ↔ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)) | |
| 18 | 16, 17 | mpbir 146 | . . . . 5 ⊢ {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ |
| 19 | 12, 18 | eqtri 2250 | . . . 4 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅ |
| 20 | 19 | a1i 9 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅) |
| 21 | unen 6967 | . . 3 ⊢ (((𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)) → (𝐴 ∪ 𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})) | |
| 22 | 5, 10, 11, 20, 21 | syl22anc 1272 | . 2 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})) |
| 23 | unrab 3475 | . . 3 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} | |
| 24 | rabid2 2708 | . . . 4 ⊢ (ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} ↔ ∀𝑧 ∈ ℕ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)) | |
| 25 | nnz 9461 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℤ) | |
| 26 | 2z 9470 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 27 | zdvdsdc 12318 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 2 ∥ 𝑧) | |
| 28 | 26, 27 | mpan 424 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → DECID 2 ∥ 𝑧) |
| 29 | exmiddc 841 | . . . . . 6 ⊢ (DECID 2 ∥ 𝑧 → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧)) | |
| 30 | 25, 28, 29 | 3syl 17 | . . . . 5 ⊢ (𝑧 ∈ ℕ → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧)) |
| 31 | 30 | orcomd 734 | . . . 4 ⊢ (𝑧 ∈ ℕ → (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)) |
| 32 | 24, 31 | mprgbir 2588 | . . 3 ⊢ ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} |
| 33 | 23, 32 | eqtr4i 2253 | . 2 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ℕ |
| 34 | 22, 33 | breqtrdi 4123 | 1 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 class class class wbr 4082 ≈ cen 6883 ℕcn 9106 2c2 9157 ℤcz 9442 ∥ cdvds 12293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-er 6678 df-en 6886 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fl 10485 df-mod 10540 df-dvds 12294 |
| This theorem is referenced by: znnen 12964 |
| Copyright terms: Public domain | W3C validator |