| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unennn | GIF version | ||
| Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.) |
| Ref | Expression |
|---|---|
| unennn | ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddennn 12682 | . . . . . 6 ⊢ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ | |
| 2 | 1 | ensymi 6859 | . . . . 5 ⊢ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| 3 | entr 6861 | . . . . 5 ⊢ ((𝐴 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) | |
| 4 | 2, 3 | mpan2 425 | . . . 4 ⊢ (𝐴 ≈ ℕ → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) |
| 5 | 4 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) |
| 6 | evenennn 12683 | . . . . . 6 ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ | |
| 7 | 6 | ensymi 6859 | . . . . 5 ⊢ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} |
| 8 | entr 6861 | . . . . 5 ⊢ ((𝐵 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) | |
| 9 | 7, 8 | mpan2 425 | . . . 4 ⊢ (𝐵 ≈ ℕ → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
| 10 | 9 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) |
| 11 | simp3 1001 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
| 12 | inrab 3444 | . . . . 5 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} | |
| 13 | pm3.24 694 | . . . . . . . 8 ⊢ ¬ (2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) | |
| 14 | ancom 266 | . . . . . . . 8 ⊢ ((2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) ↔ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)) | |
| 15 | 13, 14 | mtbi 671 | . . . . . . 7 ⊢ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧) |
| 16 | 15 | rgenw 2560 | . . . . . 6 ⊢ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧) |
| 17 | rabeq0 3489 | . . . . . 6 ⊢ ({𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ ↔ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)) | |
| 18 | 16, 17 | mpbir 146 | . . . . 5 ⊢ {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ |
| 19 | 12, 18 | eqtri 2225 | . . . 4 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅ |
| 20 | 19 | a1i 9 | . . 3 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅) |
| 21 | unen 6893 | . . 3 ⊢ (((𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)) → (𝐴 ∪ 𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})) | |
| 22 | 5, 10, 11, 20, 21 | syl22anc 1250 | . 2 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})) |
| 23 | unrab 3443 | . . 3 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} | |
| 24 | rabid2 2682 | . . . 4 ⊢ (ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} ↔ ∀𝑧 ∈ ℕ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)) | |
| 25 | nnz 9373 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℤ) | |
| 26 | 2z 9382 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 27 | zdvdsdc 12042 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 2 ∥ 𝑧) | |
| 28 | 26, 27 | mpan 424 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → DECID 2 ∥ 𝑧) |
| 29 | exmiddc 837 | . . . . . 6 ⊢ (DECID 2 ∥ 𝑧 → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧)) | |
| 30 | 25, 28, 29 | 3syl 17 | . . . . 5 ⊢ (𝑧 ∈ ℕ → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧)) |
| 31 | 30 | orcomd 730 | . . . 4 ⊢ (𝑧 ∈ ℕ → (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)) |
| 32 | 24, 31 | mprgbir 2563 | . . 3 ⊢ ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} |
| 33 | 23, 32 | eqtr4i 2228 | . 2 ⊢ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ℕ |
| 34 | 22, 33 | breqtrdi 4084 | 1 ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ∀wral 2483 {crab 2487 ∪ cun 3163 ∩ cin 3164 ∅c0 3459 class class class wbr 4043 ≈ cen 6815 ℕcn 9018 2c2 9069 ℤcz 9354 ∥ cdvds 12017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-xor 1395 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-er 6610 df-en 6818 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-n0 9278 df-z 9355 df-q 9723 df-rp 9758 df-fl 10394 df-mod 10449 df-dvds 12018 |
| This theorem is referenced by: znnen 12688 |
| Copyright terms: Public domain | W3C validator |