ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unennn GIF version

Theorem unennn 11899
Description: The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
Assertion
Ref Expression
unennn ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)

Proof of Theorem unennn
StepHypRef Expression
1 oddennn 11894 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
21ensymi 6669 . . . . 5 ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
3 entr 6671 . . . . 5 ((𝐴 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
42, 3mpan2 421 . . . 4 (𝐴 ≈ ℕ → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
543ad2ant1 1002 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → 𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})
6 evenennn 11895 . . . . . 6 {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ
76ensymi 6669 . . . . 5 ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}
8 entr 6671 . . . . 5 ((𝐵 ≈ ℕ ∧ ℕ ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
97, 8mpan2 421 . . . 4 (𝐵 ≈ ℕ → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
1093ad2ant2 1003 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧})
11 simp3 983 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
12 inrab 3343 . . . . 5 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)}
13 pm3.24 682 . . . . . . . 8 ¬ (2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧)
14 ancom 264 . . . . . . . 8 ((2 ∥ 𝑧 ∧ ¬ 2 ∥ 𝑧) ↔ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧))
1513, 14mtbi 659 . . . . . . 7 ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)
1615rgenw 2485 . . . . . 6 𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)
17 rabeq0 3387 . . . . . 6 ({𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅ ↔ ∀𝑧 ∈ ℕ ¬ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧))
1816, 17mpbir 145 . . . . 5 {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∧ 2 ∥ 𝑧)} = ∅
1912, 18eqtri 2158 . . . 4 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅
2019a1i 9 . . 3 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)
21 unen 6703 . . 3 (((𝐴 ≈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝐵 ≈ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) ∧ ((𝐴𝐵) = ∅ ∧ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∩ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ∅)) → (𝐴𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}))
225, 10, 11, 20, 21syl22anc 1217 . 2 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}))
23 unrab 3342 . . 3 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)}
24 rabid2 2605 . . . 4 (ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)} ↔ ∀𝑧 ∈ ℕ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧))
25 nnz 9066 . . . . . 6 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
26 2z 9075 . . . . . . 7 2 ∈ ℤ
27 zdvdsdc 11503 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 2 ∥ 𝑧)
2826, 27mpan 420 . . . . . 6 (𝑧 ∈ ℤ → DECID 2 ∥ 𝑧)
29 exmiddc 821 . . . . . 6 (DECID 2 ∥ 𝑧 → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧))
3025, 28, 293syl 17 . . . . 5 (𝑧 ∈ ℕ → (2 ∥ 𝑧 ∨ ¬ 2 ∥ 𝑧))
3130orcomd 718 . . . 4 (𝑧 ∈ ℕ → (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧))
3224, 31mprgbir 2488 . . 3 ℕ = {𝑧 ∈ ℕ ∣ (¬ 2 ∥ 𝑧 ∨ 2 ∥ 𝑧)}
3323, 32eqtr4i 2161 . 2 ({𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∪ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧}) = ℕ
3422, 33breqtrdi 3964 1 ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wral 2414  {crab 2418  cun 3064  cin 3065  c0 3358   class class class wbr 3924  cen 6625  cn 8713  2c2 8764  cz 9047  cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-er 6422  df-en 6628  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-q 9405  df-rp 9435  df-fl 10036  df-mod 10089  df-dvds 11483
This theorem is referenced by:  znnen  11900
  Copyright terms: Public domain W3C validator