| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-exmid 4228 | 
. 2
⊢
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥)) | 
| 2 |   | df-dc 836 | 
. . . . 5
⊢
(DECID ∅ ∈ 𝑥 ↔ (∅ ∈ 𝑥 ∨ ¬ ∅ ∈ 𝑥)) | 
| 3 |   | orcom 729 | 
. . . . . 6
⊢ ((∅
∈ 𝑥 ∨ ¬ ∅
∈ 𝑥) ↔ (¬
∅ ∈ 𝑥 ∨
∅ ∈ 𝑥)) | 
| 4 |   | simpll 527 | 
. . . . . . . . . . . . . 14
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑥 ⊆ {∅}) | 
| 5 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | 
| 6 | 4, 5 | sseldd 3184 | 
. . . . . . . . . . . . 13
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ {∅}) | 
| 7 |   | velsn 3639 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | 
| 8 | 6, 7 | sylib 122 | 
. . . . . . . . . . . 12
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑦 = ∅) | 
| 9 | 8, 5 | eqeltrrd 2274 | 
. . . . . . . . . . 11
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → ∅ ∈ 𝑥) | 
| 10 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → ¬ ∅ ∈ 𝑥) | 
| 11 | 9, 10 | pm2.65da 662 | 
. . . . . . . . . 10
⊢ ((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) →
¬ 𝑦 ∈ 𝑥) | 
| 12 | 11 | eq0rdv 3495 | 
. . . . . . . . 9
⊢ ((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) →
𝑥 =
∅) | 
| 13 | 12 | ex 115 | 
. . . . . . . 8
⊢ (𝑥 ⊆ {∅} → (¬
∅ ∈ 𝑥 →
𝑥 =
∅)) | 
| 14 |   | noel 3454 | 
. . . . . . . . 9
⊢  ¬
∅ ∈ ∅ | 
| 15 |   | eleq2 2260 | 
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∅
∈ 𝑥 ↔ ∅
∈ ∅)) | 
| 16 | 14, 15 | mtbiri 676 | 
. . . . . . . 8
⊢ (𝑥 = ∅ → ¬ ∅
∈ 𝑥) | 
| 17 | 13, 16 | impbid1 142 | 
. . . . . . 7
⊢ (𝑥 ⊆ {∅} → (¬
∅ ∈ 𝑥 ↔
𝑥 =
∅)) | 
| 18 |   | ss1o0el1 4230 | 
. . . . . . 7
⊢ (𝑥 ⊆ {∅} →
(∅ ∈ 𝑥 ↔
𝑥 =
{∅})) | 
| 19 | 17, 18 | orbi12d 794 | 
. . . . . 6
⊢ (𝑥 ⊆ {∅} →
((¬ ∅ ∈ 𝑥
∨ ∅ ∈ 𝑥)
↔ (𝑥 = ∅ ∨
𝑥 =
{∅}))) | 
| 20 | 3, 19 | bitrid 192 | 
. . . . 5
⊢ (𝑥 ⊆ {∅} →
((∅ ∈ 𝑥 ∨
¬ ∅ ∈ 𝑥)
↔ (𝑥 = ∅ ∨
𝑥 =
{∅}))) | 
| 21 | 2, 20 | bitrid 192 | 
. . . 4
⊢ (𝑥 ⊆ {∅} →
(DECID ∅ ∈ 𝑥 ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))) | 
| 22 | 21 | pm5.74i 180 | 
. . 3
⊢ ((𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | 
| 23 | 22 | albii 1484 | 
. 2
⊢
(∀𝑥(𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | 
| 24 | 1, 23 | bitri 184 | 
1
⊢
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |