ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid01 GIF version

Theorem exmid01 4281
Description: Excluded middle is equivalent to saying any subset of {∅} is either or {∅}. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid01 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))

Proof of Theorem exmid01
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-exmid 4278 . 2 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
2 df-dc 840 . . . . 5 (DECID ∅ ∈ 𝑥 ↔ (∅ ∈ 𝑥 ∨ ¬ ∅ ∈ 𝑥))
3 orcom 733 . . . . . 6 ((∅ ∈ 𝑥 ∨ ¬ ∅ ∈ 𝑥) ↔ (¬ ∅ ∈ 𝑥 ∨ ∅ ∈ 𝑥))
4 simpll 527 . . . . . . . . . . . . . 14 (((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → 𝑥 ⊆ {∅})
5 simpr 110 . . . . . . . . . . . . . 14 (((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → 𝑦𝑥)
64, 5sseldd 3225 . . . . . . . . . . . . 13 (((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ {∅})
7 velsn 3683 . . . . . . . . . . . . 13 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
86, 7sylib 122 . . . . . . . . . . . 12 (((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → 𝑦 = ∅)
98, 5eqeltrrd 2307 . . . . . . . . . . 11 (((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → ∅ ∈ 𝑥)
10 simplr 528 . . . . . . . . . . 11 (((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → ¬ ∅ ∈ 𝑥)
119, 10pm2.65da 665 . . . . . . . . . 10 ((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) → ¬ 𝑦𝑥)
1211eq0rdv 3536 . . . . . . . . 9 ((𝑥 ⊆ {∅} ∧ ¬ ∅ ∈ 𝑥) → 𝑥 = ∅)
1312ex 115 . . . . . . . 8 (𝑥 ⊆ {∅} → (¬ ∅ ∈ 𝑥𝑥 = ∅))
14 noel 3495 . . . . . . . . 9 ¬ ∅ ∈ ∅
15 eleq2 2293 . . . . . . . . 9 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
1614, 15mtbiri 679 . . . . . . . 8 (𝑥 = ∅ → ¬ ∅ ∈ 𝑥)
1713, 16impbid1 142 . . . . . . 7 (𝑥 ⊆ {∅} → (¬ ∅ ∈ 𝑥𝑥 = ∅))
18 ss1o0el1 4280 . . . . . . 7 (𝑥 ⊆ {∅} → (∅ ∈ 𝑥𝑥 = {∅}))
1917, 18orbi12d 798 . . . . . 6 (𝑥 ⊆ {∅} → ((¬ ∅ ∈ 𝑥 ∨ ∅ ∈ 𝑥) ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
203, 19bitrid 192 . . . . 5 (𝑥 ⊆ {∅} → ((∅ ∈ 𝑥 ∨ ¬ ∅ ∈ 𝑥) ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
212, 20bitrid 192 . . . 4 (𝑥 ⊆ {∅} → (DECID ∅ ∈ 𝑥 ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
2221pm5.74i 180 . . 3 ((𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2322albii 1516 . 2 (∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
241, 23bitri 184 1 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  wal 1393   = wceq 1395  wcel 2200  wss 3197  c0 3491  {csn 3666  EXMIDwem 4277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-exmid 4278
This theorem is referenced by:  exmid1dc  4283  exmidn0m  4284  exmidsssn  4285  exmidpw  7058  exmidpweq  7059  exmidomni  7297  ss1oel2o  16285  exmidsbthrlem  16321  sbthom  16325
  Copyright terms: Public domain W3C validator