| Step | Hyp | Ref
| Expression |
| 1 | | df-exmid 4229 |
. 2
⊢
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥)) |
| 2 | | df-dc 836 |
. . . . 5
⊢
(DECID ∅ ∈ 𝑥 ↔ (∅ ∈ 𝑥 ∨ ¬ ∅ ∈ 𝑥)) |
| 3 | | orcom 729 |
. . . . . 6
⊢ ((∅
∈ 𝑥 ∨ ¬ ∅
∈ 𝑥) ↔ (¬
∅ ∈ 𝑥 ∨
∅ ∈ 𝑥)) |
| 4 | | simpll 527 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑥 ⊆ {∅}) |
| 5 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
| 6 | 4, 5 | sseldd 3185 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ {∅}) |
| 7 | | velsn 3640 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) |
| 8 | 6, 7 | sylib 122 |
. . . . . . . . . . . 12
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → 𝑦 = ∅) |
| 9 | 8, 5 | eqeltrrd 2274 |
. . . . . . . . . . 11
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → ∅ ∈ 𝑥) |
| 10 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) ∧
𝑦 ∈ 𝑥) → ¬ ∅ ∈ 𝑥) |
| 11 | 9, 10 | pm2.65da 662 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) →
¬ 𝑦 ∈ 𝑥) |
| 12 | 11 | eq0rdv 3496 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ {∅} ∧ ¬
∅ ∈ 𝑥) →
𝑥 =
∅) |
| 13 | 12 | ex 115 |
. . . . . . . 8
⊢ (𝑥 ⊆ {∅} → (¬
∅ ∈ 𝑥 →
𝑥 =
∅)) |
| 14 | | noel 3455 |
. . . . . . . . 9
⊢ ¬
∅ ∈ ∅ |
| 15 | | eleq2 2260 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∅
∈ 𝑥 ↔ ∅
∈ ∅)) |
| 16 | 14, 15 | mtbiri 676 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ¬ ∅
∈ 𝑥) |
| 17 | 13, 16 | impbid1 142 |
. . . . . . 7
⊢ (𝑥 ⊆ {∅} → (¬
∅ ∈ 𝑥 ↔
𝑥 =
∅)) |
| 18 | | ss1o0el1 4231 |
. . . . . . 7
⊢ (𝑥 ⊆ {∅} →
(∅ ∈ 𝑥 ↔
𝑥 =
{∅})) |
| 19 | 17, 18 | orbi12d 794 |
. . . . . 6
⊢ (𝑥 ⊆ {∅} →
((¬ ∅ ∈ 𝑥
∨ ∅ ∈ 𝑥)
↔ (𝑥 = ∅ ∨
𝑥 =
{∅}))) |
| 20 | 3, 19 | bitrid 192 |
. . . . 5
⊢ (𝑥 ⊆ {∅} →
((∅ ∈ 𝑥 ∨
¬ ∅ ∈ 𝑥)
↔ (𝑥 = ∅ ∨
𝑥 =
{∅}))) |
| 21 | 2, 20 | bitrid 192 |
. . . 4
⊢ (𝑥 ⊆ {∅} →
(DECID ∅ ∈ 𝑥 ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 22 | 21 | pm5.74i 180 |
. . 3
⊢ ((𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥) ↔ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 23 | 22 | albii 1484 |
. 2
⊢
(∀𝑥(𝑥 ⊆ {∅} →
DECID ∅ ∈ 𝑥) ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 24 | 1, 23 | bitri 184 |
1
⊢
(EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |