| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssb | GIF version | ||
| Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssb | ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3212 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
| 2 | velsn 3683 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | imbi1i 238 | . . 3 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | 3 | albii 1516 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 5 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | 5 | pm5.74i 180 | . . . 4 ⊢ ((𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
| 7 | 6 | albii 1516 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
| 8 | 19.23v 1929 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | |
| 9 | isset 2806 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 10 | 9 | bicomi 132 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ V) |
| 11 | 10 | imbi1i 238 | . . 3 ⊢ ((∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
| 12 | 7, 8, 11 | 3bitri 206 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
| 13 | 1, 4, 12 | 3bitri 206 | 1 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: snssg 3802 |
| Copyright terms: Public domain | W3C validator |