| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snssb | GIF version | ||
| Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| snssb | ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfss2 3172 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
| 2 | velsn 3639 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | imbi1i 238 | . . 3 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| 4 | 3 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| 5 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | 5 | pm5.74i 180 | . . . 4 ⊢ ((𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | 
| 7 | 6 | albii 1484 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | 
| 8 | 19.23v 1897 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | |
| 9 | isset 2769 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 10 | 9 | bicomi 132 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ V) | 
| 11 | 10 | imbi1i 238 | . . 3 ⊢ ((∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | 
| 12 | 7, 8, 11 | 3bitri 206 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | 
| 13 | 1, 4, 12 | 3bitri 206 | 1 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐴 ∈ V → 𝐴 ∈ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 | 
| This theorem is referenced by: snssg 3756 | 
| Copyright terms: Public domain | W3C validator |