| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.27m | GIF version | ||
| Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| r19.27m.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| r19.27m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 2633 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.27m.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | r19.3rm 3553 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | 3 | anbi2d 464 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 5 | 1, 4 | bitr4id 199 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cleq 2199 df-clel 2202 df-ral 2490 |
| This theorem is referenced by: r19.27mv 3561 raaanlem 3569 |
| Copyright terms: Public domain | W3C validator |