Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.27m | GIF version |
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) |
Ref | Expression |
---|---|
r19.27m.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
r19.27m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2590 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
2 | r19.27m.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | r19.3rm 3493 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
4 | 3 | anbi2d 460 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
5 | 1, 4 | bitr4id 198 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 Ⅎwnf 1447 ∃wex 1479 ∈ wcel 2135 ∀wral 2442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-cleq 2157 df-clel 2160 df-ral 2447 |
This theorem is referenced by: r19.27mv 3501 raaanlem 3510 |
Copyright terms: Public domain | W3C validator |