![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.27m | GIF version |
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) |
Ref | Expression |
---|---|
r19.27m.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
r19.27m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2616 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
2 | r19.27m.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | r19.3rm 3526 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
4 | 3 | anbi2d 464 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
5 | 1, 4 | bitr4id 199 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1471 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-cleq 2182 df-clel 2185 df-ral 2473 |
This theorem is referenced by: r19.27mv 3534 raaanlem 3543 |
Copyright terms: Public domain | W3C validator |