| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | rgen 2583 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
| 3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | r19.23 2639 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 5 | 2, 4 | mpbi 145 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1506 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexlimiv 2642 r19.29af2 2671 triun 4194 reusv1 4546 reusv3 4548 onintrab2im 4607 fun11iun 5589 fisumcom2 11935 fprodcom2fi 12123 |
| Copyright terms: Public domain | W3C validator |