Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | rgen 2519 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | r19.23 2574 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
5 | 2, 4 | mpbi 144 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: rexlimiv 2577 r19.29af2 2606 triun 4093 reusv1 4436 reusv3 4438 onintrab2im 4495 fun11iun 5453 fisumcom2 11379 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |