Step | Hyp | Ref
| Expression |
1 | | ctiunct.som |
. . 3
⊢ (𝜑 → 𝑆 ⊆ ω) |
2 | | ctiunct.sdc |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
3 | | ctiunct.f |
. . 3
⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
4 | | ctiunct.tom |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) |
5 | | ctiunct.tdc |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
6 | | ctiunct.g |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) |
7 | | ctiunct.j |
. . 3
⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) |
8 | | ctiunct.u |
. . 3
⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st
‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} |
9 | | ctiunct.h |
. . 3
⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ctiunctlemf 12139 |
. 2
⊢ (𝜑 → 𝐻:𝑈⟶∪
𝑥 ∈ 𝐴 𝐵) |
11 | | nfv 1508 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
12 | | nfiu1 3879 |
. . . . . 6
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
13 | 12 | nfcri 2293 |
. . . . 5
⊢
Ⅎ𝑥 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
14 | 11, 13 | nfan 1545 |
. . . 4
⊢
Ⅎ𝑥(𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
15 | | ctiunct.nfu |
. . . . 5
⊢
Ⅎ𝑥𝑈 |
16 | | ctiunct.nfh |
. . . . . . 7
⊢
Ⅎ𝑥𝐻 |
17 | | nfcv 2299 |
. . . . . . 7
⊢
Ⅎ𝑥𝑣 |
18 | 16, 17 | nffv 5475 |
. . . . . 6
⊢
Ⅎ𝑥(𝐻‘𝑣) |
19 | 18 | nfeq2 2311 |
. . . . 5
⊢
Ⅎ𝑥 𝑢 = (𝐻‘𝑣) |
20 | 15, 19 | nfrexxy 2496 |
. . . 4
⊢
Ⅎ𝑥∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣) |
21 | | simplll 523 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → 𝜑) |
22 | | simplr 520 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
23 | 21, 22, 6 | syl2anc 409 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → 𝐺:𝑇–onto→𝐵) |
24 | | foelrn 5698 |
. . . . . 6
⊢ ((𝐺:𝑇–onto→𝐵 ∧ 𝑢 ∈ 𝐵) → ∃𝑤 ∈ 𝑇 𝑢 = (𝐺‘𝑤)) |
25 | 23, 24 | sylancom 417 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → ∃𝑤 ∈ 𝑇 𝑢 = (𝐺‘𝑤)) |
26 | 3 | ad4antr 486 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → 𝐹:𝑆–onto→𝐴) |
27 | | simpllr 524 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → 𝑥 ∈ 𝐴) |
28 | | foelrn 5698 |
. . . . . . 7
⊢ ((𝐹:𝑆–onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑟 ∈ 𝑆 𝑥 = (𝐹‘𝑟)) |
29 | 26, 27, 28 | syl2anc 409 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → ∃𝑟 ∈ 𝑆 𝑥 = (𝐹‘𝑟)) |
30 | | f1ocnv 5424 |
. . . . . . . . . . . 12
⊢ (𝐽:ω–1-1-onto→(ω × ω) → ◡𝐽:(ω × ω)–1-1-onto→ω) |
31 | 7, 30 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝐽:(ω × ω)–1-1-onto→ω) |
32 | | f1of 5411 |
. . . . . . . . . . 11
⊢ (◡𝐽:(ω × ω)–1-1-onto→ω → ◡𝐽:(ω ×
ω)⟶ω) |
33 | 31, 32 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐽:(ω ×
ω)⟶ω) |
34 | 33 | ad5antr 488 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ◡𝐽:(ω ×
ω)⟶ω) |
35 | 1 | ad5antr 488 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑆 ⊆ ω) |
36 | | simprl 521 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑟 ∈ 𝑆) |
37 | 35, 36 | sseldd 3129 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑟 ∈ ω) |
38 | | simp-5l 533 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝜑) |
39 | 27 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑥 ∈ 𝐴) |
40 | 38, 39, 4 | syl2anc 409 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑇 ⊆ ω) |
41 | | simplrl 525 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑤 ∈ 𝑇) |
42 | 40, 41 | sseldd 3129 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑤 ∈ ω) |
43 | 37, 42 | opelxpd 4616 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 〈𝑟, 𝑤〉 ∈ (ω ×
ω)) |
44 | 34, 43 | ffvelrnd 5600 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (◡𝐽‘〈𝑟, 𝑤〉) ∈ ω) |
45 | 38, 7 | syl 14 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝐽:ω–1-1-onto→(ω × ω)) |
46 | | f1ocnvfv2 5723 |
. . . . . . . . . . . . 13
⊢ ((𝐽:ω–1-1-onto→(ω × ω) ∧ 〈𝑟, 𝑤〉 ∈ (ω × ω))
→ (𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)) = 〈𝑟, 𝑤〉) |
47 | 45, 43, 46 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)) = 〈𝑟, 𝑤〉) |
48 | 47 | fveq2d 5469 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = (1st
‘〈𝑟, 𝑤〉)) |
49 | | vex 2715 |
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V |
50 | | vex 2715 |
. . . . . . . . . . . 12
⊢ 𝑤 ∈ V |
51 | 49, 50 | op1st 6088 |
. . . . . . . . . . 11
⊢
(1st ‘〈𝑟, 𝑤〉) = 𝑟 |
52 | 48, 51 | eqtrdi 2206 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = 𝑟) |
53 | 52, 36 | eqeltrd 2234 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆) |
54 | 47 | fveq2d 5469 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = (2nd
‘〈𝑟, 𝑤〉)) |
55 | 49, 50 | op2nd 6089 |
. . . . . . . . . . 11
⊢
(2nd ‘〈𝑟, 𝑤〉) = 𝑤 |
56 | 54, 55 | eqtrdi 2206 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = 𝑤) |
57 | 52 | fveq2d 5469 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) = (𝐹‘𝑟)) |
58 | | simprr 522 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑥 = (𝐹‘𝑟)) |
59 | 57, 58 | eqtr4d 2193 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) = 𝑥) |
60 | 59 | csbeq1d 3038 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇 = ⦋𝑥 / 𝑥⦌𝑇) |
61 | | csbid 3039 |
. . . . . . . . . . 11
⊢
⦋𝑥 /
𝑥⦌𝑇 = 𝑇 |
62 | 60, 61 | eqtrdi 2206 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇 = 𝑇) |
63 | 41, 56, 62 | 3eltr4d 2241 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇) |
64 | 53, 63 | jca 304 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ((1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆 ∧ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇)) |
65 | | 2fveq3 5470 |
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (1st ‘(𝐽‘𝑧)) = (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) |
66 | 65 | eleq1d 2226 |
. . . . . . . . . 10
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆)) |
67 | | 2fveq3 5470 |
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (2nd ‘(𝐽‘𝑧)) = (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) |
68 | 65 | fveq2d 5469 |
. . . . . . . . . . . 12
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (𝐹‘(1st ‘(𝐽‘𝑧))) = (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) |
69 | 68 | csbeq1d 3038 |
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → ⦋(𝐹‘(1st
‘(𝐽‘𝑧))) / 𝑥⦌𝑇 = ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇) |
70 | 67, 69 | eleq12d 2228 |
. . . . . . . . . 10
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → ((2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 ↔ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇)) |
71 | 66, 70 | anbi12d 465 |
. . . . . . . . 9
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (((1st
‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇) ↔ ((1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆 ∧ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇))) |
72 | 71, 8 | elrab2 2871 |
. . . . . . . 8
⊢ ((◡𝐽‘〈𝑟, 𝑤〉) ∈ 𝑈 ↔ ((◡𝐽‘〈𝑟, 𝑤〉) ∈ ω ∧ ((1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆 ∧ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇))) |
73 | 44, 64, 72 | sylanbrc 414 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (◡𝐽‘〈𝑟, 𝑤〉) ∈ 𝑈) |
74 | 59 | csbeq1d 3038 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺 = ⦋𝑥 / 𝑥⦌𝐺) |
75 | | csbid 3039 |
. . . . . . . . . 10
⊢
⦋𝑥 /
𝑥⦌𝐺 = 𝐺 |
76 | 74, 75 | eqtrdi 2206 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺 = 𝐺) |
77 | 76, 56 | fveq12d 5472 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) = (𝐺‘𝑤)) |
78 | | 2fveq3 5470 |
. . . . . . . . . . . 12
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (1st ‘(𝐽‘𝑛)) = (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) |
79 | 78 | fveq2d 5469 |
. . . . . . . . . . 11
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (𝐹‘(1st ‘(𝐽‘𝑛))) = (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) |
80 | 79 | csbeq1d 3038 |
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → ⦋(𝐹‘(1st
‘(𝐽‘𝑛))) / 𝑥⦌𝐺 = ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺) |
81 | | 2fveq3 5470 |
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (2nd ‘(𝐽‘𝑛)) = (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) |
82 | 80, 81 | fveq12d 5472 |
. . . . . . . . 9
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (⦋(𝐹‘(1st
‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) = (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) |
83 | | simplrr 526 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 = (𝐺‘𝑤)) |
84 | 83, 77 | eqtr4d 2193 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 = (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) |
85 | | simpllr 524 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 ∈ 𝐵) |
86 | 84, 85 | eqeltrrd 2235 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) ∈ 𝐵) |
87 | 9, 82, 73, 86 | fvmptd3 5558 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉)) = (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) |
88 | 77, 87, 83 | 3eqtr4rd 2201 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 = (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉))) |
89 | | fveq2 5465 |
. . . . . . . 8
⊢ (𝑣 = (◡𝐽‘〈𝑟, 𝑤〉) → (𝐻‘𝑣) = (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉))) |
90 | 89 | rspceeqv 2834 |
. . . . . . 7
⊢ (((◡𝐽‘〈𝑟, 𝑤〉) ∈ 𝑈 ∧ 𝑢 = (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉))) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) |
91 | 73, 88, 90 | syl2anc 409 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) |
92 | 29, 91 | rexlimddv 2579 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) |
93 | 25, 92 | rexlimddv 2579 |
. . . 4
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) |
94 | | eliun 3853 |
. . . . . 6
⊢ (𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐵) |
95 | 94 | biimpi 119 |
. . . . 5
⊢ (𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐵) |
96 | 95 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐵) |
97 | 14, 20, 93, 96 | r19.29af2 2597 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) |
98 | 97 | ralrimiva 2530 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) |
99 | | dffo3 5611 |
. 2
⊢ (𝐻:𝑈–onto→∪ 𝑥 ∈ 𝐴 𝐵 ↔ (𝐻:𝑈⟶∪
𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣))) |
100 | 10, 98, 99 | sylanbrc 414 |
1
⊢ (𝜑 → 𝐻:𝑈–onto→∪ 𝑥 ∈ 𝐴 𝐵) |