| Step | Hyp | Ref
 | Expression | 
| 1 |   | ctiunct.som | 
. . 3
⊢ (𝜑 → 𝑆 ⊆ ω) | 
| 2 |   | ctiunct.sdc | 
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) | 
| 3 |   | ctiunct.f | 
. . 3
⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) | 
| 4 |   | ctiunct.tom | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) | 
| 5 |   | ctiunct.tdc | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) | 
| 6 |   | ctiunct.g | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) | 
| 7 |   | ctiunct.j | 
. . 3
⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) | 
| 8 |   | ctiunct.u | 
. . 3
⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st
‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} | 
| 9 |   | ctiunct.h | 
. . 3
⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) | 
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ctiunctlemf 12655 | 
. 2
⊢ (𝜑 → 𝐻:𝑈⟶∪
𝑥 ∈ 𝐴 𝐵) | 
| 11 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥𝜑 | 
| 12 |   | nfiu1 3946 | 
. . . . . 6
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | 
| 13 | 12 | nfcri 2333 | 
. . . . 5
⊢
Ⅎ𝑥 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 | 
| 14 | 11, 13 | nfan 1579 | 
. . . 4
⊢
Ⅎ𝑥(𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) | 
| 15 |   | ctiunct.nfu | 
. . . . 5
⊢
Ⅎ𝑥𝑈 | 
| 16 |   | ctiunct.nfh | 
. . . . . . 7
⊢
Ⅎ𝑥𝐻 | 
| 17 |   | nfcv 2339 | 
. . . . . . 7
⊢
Ⅎ𝑥𝑣 | 
| 18 | 16, 17 | nffv 5568 | 
. . . . . 6
⊢
Ⅎ𝑥(𝐻‘𝑣) | 
| 19 | 18 | nfeq2 2351 | 
. . . . 5
⊢
Ⅎ𝑥 𝑢 = (𝐻‘𝑣) | 
| 20 | 15, 19 | nfrexw 2536 | 
. . . 4
⊢
Ⅎ𝑥∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣) | 
| 21 |   | simplll 533 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → 𝜑) | 
| 22 |   | simplr 528 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → 𝑥 ∈ 𝐴) | 
| 23 | 21, 22, 6 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → 𝐺:𝑇–onto→𝐵) | 
| 24 |   | foelrn 5799 | 
. . . . . 6
⊢ ((𝐺:𝑇–onto→𝐵 ∧ 𝑢 ∈ 𝐵) → ∃𝑤 ∈ 𝑇 𝑢 = (𝐺‘𝑤)) | 
| 25 | 23, 24 | sylancom 420 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → ∃𝑤 ∈ 𝑇 𝑢 = (𝐺‘𝑤)) | 
| 26 | 3 | ad4antr 494 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → 𝐹:𝑆–onto→𝐴) | 
| 27 |   | simpllr 534 | 
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → 𝑥 ∈ 𝐴) | 
| 28 |   | foelrn 5799 | 
. . . . . . 7
⊢ ((𝐹:𝑆–onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑟 ∈ 𝑆 𝑥 = (𝐹‘𝑟)) | 
| 29 | 26, 27, 28 | syl2anc 411 | 
. . . . . 6
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → ∃𝑟 ∈ 𝑆 𝑥 = (𝐹‘𝑟)) | 
| 30 |   | f1ocnv 5517 | 
. . . . . . . . . . . 12
⊢ (𝐽:ω–1-1-onto→(ω × ω) → ◡𝐽:(ω × ω)–1-1-onto→ω) | 
| 31 | 7, 30 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝐽:(ω × ω)–1-1-onto→ω) | 
| 32 |   | f1of 5504 | 
. . . . . . . . . . 11
⊢ (◡𝐽:(ω × ω)–1-1-onto→ω → ◡𝐽:(ω ×
ω)⟶ω) | 
| 33 | 31, 32 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐽:(ω ×
ω)⟶ω) | 
| 34 | 33 | ad5antr 496 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ◡𝐽:(ω ×
ω)⟶ω) | 
| 35 | 1 | ad5antr 496 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑆 ⊆ ω) | 
| 36 |   | simprl 529 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑟 ∈ 𝑆) | 
| 37 | 35, 36 | sseldd 3184 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑟 ∈ ω) | 
| 38 |   | simp-5l 543 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝜑) | 
| 39 | 27 | adantr 276 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑥 ∈ 𝐴) | 
| 40 | 38, 39, 4 | syl2anc 411 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑇 ⊆ ω) | 
| 41 |   | simplrl 535 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑤 ∈ 𝑇) | 
| 42 | 40, 41 | sseldd 3184 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑤 ∈ ω) | 
| 43 | 37, 42 | opelxpd 4696 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 〈𝑟, 𝑤〉 ∈ (ω ×
ω)) | 
| 44 | 34, 43 | ffvelcdmd 5698 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (◡𝐽‘〈𝑟, 𝑤〉) ∈ ω) | 
| 45 | 38, 7 | syl 14 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝐽:ω–1-1-onto→(ω × ω)) | 
| 46 |   | f1ocnvfv2 5825 | 
. . . . . . . . . . . . 13
⊢ ((𝐽:ω–1-1-onto→(ω × ω) ∧ 〈𝑟, 𝑤〉 ∈ (ω × ω))
→ (𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)) = 〈𝑟, 𝑤〉) | 
| 47 | 45, 43, 46 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)) = 〈𝑟, 𝑤〉) | 
| 48 | 47 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = (1st
‘〈𝑟, 𝑤〉)) | 
| 49 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V | 
| 50 |   | vex 2766 | 
. . . . . . . . . . . 12
⊢ 𝑤 ∈ V | 
| 51 | 49, 50 | op1st 6204 | 
. . . . . . . . . . 11
⊢
(1st ‘〈𝑟, 𝑤〉) = 𝑟 | 
| 52 | 48, 51 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = 𝑟) | 
| 53 | 52, 36 | eqeltrd 2273 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆) | 
| 54 | 47 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = (2nd
‘〈𝑟, 𝑤〉)) | 
| 55 | 49, 50 | op2nd 6205 | 
. . . . . . . . . . 11
⊢
(2nd ‘〈𝑟, 𝑤〉) = 𝑤 | 
| 56 | 54, 55 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) = 𝑤) | 
| 57 | 52 | fveq2d 5562 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) = (𝐹‘𝑟)) | 
| 58 |   | simprr 531 | 
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑥 = (𝐹‘𝑟)) | 
| 59 | 57, 58 | eqtr4d 2232 | 
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) = 𝑥) | 
| 60 | 59 | csbeq1d 3091 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇 = ⦋𝑥 / 𝑥⦌𝑇) | 
| 61 |   | csbid 3092 | 
. . . . . . . . . . 11
⊢
⦋𝑥 /
𝑥⦌𝑇 = 𝑇 | 
| 62 | 60, 61 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇 = 𝑇) | 
| 63 | 41, 56, 62 | 3eltr4d 2280 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇) | 
| 64 | 53, 63 | jca 306 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ((1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆 ∧ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇)) | 
| 65 |   | 2fveq3 5563 | 
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (1st ‘(𝐽‘𝑧)) = (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) | 
| 66 | 65 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆)) | 
| 67 |   | 2fveq3 5563 | 
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (2nd ‘(𝐽‘𝑧)) = (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) | 
| 68 | 65 | fveq2d 5562 | 
. . . . . . . . . . . 12
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (𝐹‘(1st ‘(𝐽‘𝑧))) = (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) | 
| 69 | 68 | csbeq1d 3091 | 
. . . . . . . . . . 11
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → ⦋(𝐹‘(1st
‘(𝐽‘𝑧))) / 𝑥⦌𝑇 = ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇) | 
| 70 | 67, 69 | eleq12d 2267 | 
. . . . . . . . . 10
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → ((2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 ↔ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇)) | 
| 71 | 66, 70 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑧 = (◡𝐽‘〈𝑟, 𝑤〉) → (((1st
‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇) ↔ ((1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆 ∧ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇))) | 
| 72 | 71, 8 | elrab2 2923 | 
. . . . . . . 8
⊢ ((◡𝐽‘〈𝑟, 𝑤〉) ∈ 𝑈 ↔ ((◡𝐽‘〈𝑟, 𝑤〉) ∈ ω ∧ ((1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ 𝑆 ∧ (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))) ∈ ⦋(𝐹‘(1st
‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝑇))) | 
| 73 | 44, 64, 72 | sylanbrc 417 | 
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (◡𝐽‘〈𝑟, 𝑤〉) ∈ 𝑈) | 
| 74 | 59 | csbeq1d 3091 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺 = ⦋𝑥 / 𝑥⦌𝐺) | 
| 75 |   | csbid 3092 | 
. . . . . . . . . 10
⊢
⦋𝑥 /
𝑥⦌𝐺 = 𝐺 | 
| 76 | 74, 75 | eqtrdi 2245 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺 = 𝐺) | 
| 77 | 76, 56 | fveq12d 5565 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) = (𝐺‘𝑤)) | 
| 78 |   | 2fveq3 5563 | 
. . . . . . . . . . . 12
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (1st ‘(𝐽‘𝑛)) = (1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) | 
| 79 | 78 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (𝐹‘(1st ‘(𝐽‘𝑛))) = (𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) | 
| 80 | 79 | csbeq1d 3091 | 
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → ⦋(𝐹‘(1st
‘(𝐽‘𝑛))) / 𝑥⦌𝐺 = ⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺) | 
| 81 |   | 2fveq3 5563 | 
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (2nd ‘(𝐽‘𝑛)) = (2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) | 
| 82 | 80, 81 | fveq12d 5565 | 
. . . . . . . . 9
⊢ (𝑛 = (◡𝐽‘〈𝑟, 𝑤〉) → (⦋(𝐹‘(1st
‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) = (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) | 
| 83 |   | simplrr 536 | 
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 = (𝐺‘𝑤)) | 
| 84 | 83, 77 | eqtr4d 2232 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 = (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) | 
| 85 |   | simpllr 534 | 
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 ∈ 𝐵) | 
| 86 | 84, 85 | eqeltrrd 2274 | 
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) ∈ 𝐵) | 
| 87 | 9, 82, 73, 86 | fvmptd3 5655 | 
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉)) = (⦋(𝐹‘(1st ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉)))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘(◡𝐽‘〈𝑟, 𝑤〉))))) | 
| 88 | 77, 87, 83 | 3eqtr4rd 2240 | 
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → 𝑢 = (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉))) | 
| 89 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑣 = (◡𝐽‘〈𝑟, 𝑤〉) → (𝐻‘𝑣) = (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉))) | 
| 90 | 89 | rspceeqv 2886 | 
. . . . . . 7
⊢ (((◡𝐽‘〈𝑟, 𝑤〉) ∈ 𝑈 ∧ 𝑢 = (𝐻‘(◡𝐽‘〈𝑟, 𝑤〉))) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) | 
| 91 | 73, 88, 90 | syl2anc 411 | 
. . . . . 6
⊢
((((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) ∧ (𝑟 ∈ 𝑆 ∧ 𝑥 = (𝐹‘𝑟))) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) | 
| 92 | 29, 91 | rexlimddv 2619 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) ∧ (𝑤 ∈ 𝑇 ∧ 𝑢 = (𝐺‘𝑤))) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) | 
| 93 | 25, 92 | rexlimddv 2619 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ 𝐵) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) | 
| 94 |   | eliun 3920 | 
. . . . . 6
⊢ (𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐵) | 
| 95 | 94 | biimpi 120 | 
. . . . 5
⊢ (𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐵) | 
| 96 | 95 | adantl 277 | 
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐵) | 
| 97 | 14, 20, 93, 96 | r19.29af2 2637 | 
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) | 
| 98 | 97 | ralrimiva 2570 | 
. 2
⊢ (𝜑 → ∀𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣)) | 
| 99 |   | dffo3 5709 | 
. 2
⊢ (𝐻:𝑈–onto→∪ 𝑥 ∈ 𝐴 𝐵 ↔ (𝐻:𝑈⟶∪
𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐵∃𝑣 ∈ 𝑈 𝑢 = (𝐻‘𝑣))) | 
| 100 | 10, 98, 99 | sylanbrc 417 | 
1
⊢ (𝜑 → 𝐻:𝑈–onto→∪ 𝑥 ∈ 𝐴 𝐵) |