| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.29af | GIF version | ||
| Description: A commonly used pattern based on r19.29 2668. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
| r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29af | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 5 | 1, 2, 3, 4 | r19.29af2 2671 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1506 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: r19.29an 2673 r19.29a 2674 suplocsrlem 7991 supinfneg 9786 infsupneg 9787 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |