| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.29an | GIF version | ||
| Description: A commonly used pattern based on r19.29 2634. (Contributed by Thierry Arnoux, 29-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| r19.29an.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | 
| Ref | Expression | 
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfre1 2540 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜓 | |
| 3 | 1, 2 | nfan 1579 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) | 
| 4 | r19.29an.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 5 | 4 | adantllr 481 | . 2 ⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | 
| 6 | simpr 110 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 𝜓) | |
| 7 | 3, 5, 6 | r19.29af 2638 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: exmidontriimlem2 7289 summodclem2 11547 4sqlemsdc 12569 | 
| Copyright terms: Public domain | W3C validator |