![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.29an | GIF version |
Description: A commonly used pattern based on r19.29 2614. (Contributed by Thierry Arnoux, 29-Dec-2019.) |
Ref | Expression |
---|---|
r19.29an.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | nfre1 2520 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜓 | |
3 | 1, 2 | nfan 1565 | . 2 ⊢ Ⅎ𝑥(𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) |
4 | r19.29an.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
5 | 4 | adantllr 481 | . 2 ⊢ ((((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
6 | simpr 110 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 𝜓) | |
7 | 3, 5, 6 | r19.29af 2618 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-ral 2460 df-rex 2461 |
This theorem is referenced by: exmidontriimlem2 7224 summodclem2 11393 |
Copyright terms: Public domain | W3C validator |