Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriimlem2 | GIF version |
Description: Lemma for exmidontriim 7175. (Contributed by Jim Kingdon, 12-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem2.b | ⊢ (𝜑 → 𝐵 ∈ On) |
exmidontriimlem2.em | ⊢ (𝜑 → EXMID) |
exmidontriimlem2.hb | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) |
Ref | Expression |
---|---|
exmidontriimlem2 | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidontriimlem2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
2 | 1 | ad2antrr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐵 ∈ On) |
3 | simpr 109 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝑦) | |
4 | simplr 520 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | jca 304 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) |
6 | ontr1 4364 | . . . . 5 ⊢ (𝐵 ∈ On → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝐴 ∈ 𝐵)) | |
7 | 2, 5, 6 | sylc 62 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
8 | 7 | r19.29an 2606 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
9 | 8 | orcd 723 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
10 | simpr 109 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 = 𝑦) | |
11 | simplr 520 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝑦 ∈ 𝐵) | |
12 | 10, 11 | eqeltrd 2241 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
13 | 12 | r19.29an 2606 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
14 | 13 | orcd 723 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
15 | simpr 109 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) | |
16 | 15 | olcd 724 | . 2 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
17 | exmidontriimlem2.hb | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) | |
18 | exmidontriimlem2.em | . . 3 ⊢ (𝜑 → EXMID) | |
19 | exmidontriimlem1 7171 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) ∧ EXMID) → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | |
20 | 17, 18, 19 | syl2anc 409 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
21 | 9, 14, 16, 20 | mpjao3dan 1296 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 ∨ w3o 966 = wceq 1342 ∈ wcel 2135 ∀wral 2442 ∃wrex 2443 EXMIDwem 4170 Oncon0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-nul 4105 ax-pow 4150 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2726 df-dif 3116 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-uni 3787 df-tr 4078 df-exmid 4171 df-iord 4341 df-on 4343 |
This theorem is referenced by: exmidontriimlem3 7173 |
Copyright terms: Public domain | W3C validator |