ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem2 GIF version

Theorem exmidontriimlem2 7350
Description: Lemma for exmidontriim 7353. (Contributed by Jim Kingdon, 12-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem2.b (𝜑𝐵 ∈ On)
exmidontriimlem2.em (𝜑EXMID)
exmidontriimlem2.hb (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
Assertion
Ref Expression
exmidontriimlem2 (𝜑 → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝜑,𝑦

Proof of Theorem exmidontriimlem2
StepHypRef Expression
1 exmidontriimlem2.b . . . . . 6 (𝜑𝐵 ∈ On)
21ad2antrr 488 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝐵 ∈ On)
3 simpr 110 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝐴𝑦)
4 simplr 528 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝑦𝐵)
53, 4jca 306 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → (𝐴𝑦𝑦𝐵))
6 ontr1 4444 . . . . 5 (𝐵 ∈ On → ((𝐴𝑦𝑦𝐵) → 𝐴𝐵))
72, 5, 6sylc 62 . . . 4 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝐴𝐵)
87r19.29an 2649 . . 3 ((𝜑 ∧ ∃𝑦𝐵 𝐴𝑦) → 𝐴𝐵)
98orcd 735 . 2 ((𝜑 ∧ ∃𝑦𝐵 𝐴𝑦) → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
10 simpr 110 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴 = 𝑦) → 𝐴 = 𝑦)
11 simplr 528 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴 = 𝑦) → 𝑦𝐵)
1210, 11eqeltrd 2283 . . . 4 (((𝜑𝑦𝐵) ∧ 𝐴 = 𝑦) → 𝐴𝐵)
1312r19.29an 2649 . . 3 ((𝜑 ∧ ∃𝑦𝐵 𝐴 = 𝑦) → 𝐴𝐵)
1413orcd 735 . 2 ((𝜑 ∧ ∃𝑦𝐵 𝐴 = 𝑦) → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
15 simpr 110 . . 3 ((𝜑 ∧ ∀𝑦𝐵 𝑦𝐴) → ∀𝑦𝐵 𝑦𝐴)
1615olcd 736 . 2 ((𝜑 ∧ ∀𝑦𝐵 𝑦𝐴) → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
17 exmidontriimlem2.hb . . 3 (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
18 exmidontriimlem2.em . . 3 (𝜑EXMID)
19 exmidontriimlem1 7349 . . 3 ((∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴) ∧ EXMID) → (∃𝑦𝐵 𝐴𝑦 ∨ ∃𝑦𝐵 𝐴 = 𝑦 ∨ ∀𝑦𝐵 𝑦𝐴))
2017, 18, 19syl2anc 411 . 2 (𝜑 → (∃𝑦𝐵 𝐴𝑦 ∨ ∃𝑦𝐵 𝐴 = 𝑦 ∨ ∀𝑦𝐵 𝑦𝐴))
219, 14, 16, 20mpjao3dan 1320 1 (𝜑 → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3o 980   = wceq 1373  wcel 2177  wral 2485  wrex 2486  EXMIDwem 4246  Oncon0 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-uni 3857  df-tr 4151  df-exmid 4247  df-iord 4421  df-on 4423
This theorem is referenced by:  exmidontriimlem3  7351
  Copyright terms: Public domain W3C validator