| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontriimlem2 | GIF version | ||
| Description: Lemma for exmidontriim 7403. (Contributed by Jim Kingdon, 12-Aug-2024.) |
| Ref | Expression |
|---|---|
| exmidontriimlem2.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| exmidontriimlem2.em | ⊢ (𝜑 → EXMID) |
| exmidontriimlem2.hb | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| exmidontriimlem2 | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidontriimlem2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 2 | 1 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐵 ∈ On) |
| 3 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝑦) | |
| 4 | simplr 528 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ 𝐵) | |
| 5 | 3, 4 | jca 306 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) |
| 6 | ontr1 4479 | . . . . 5 ⊢ (𝐵 ∈ On → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝐴 ∈ 𝐵)) | |
| 7 | 2, 5, 6 | sylc 62 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
| 8 | 7 | r19.29an 2673 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
| 9 | 8 | orcd 738 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 10 | simpr 110 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 = 𝑦) | |
| 11 | simplr 528 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝑦 ∈ 𝐵) | |
| 12 | 10, 11 | eqeltrd 2306 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
| 13 | 12 | r19.29an 2673 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
| 14 | 13 | orcd 738 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 15 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) | |
| 16 | 15 | olcd 739 | . 2 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 17 | exmidontriimlem2.hb | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) | |
| 18 | exmidontriimlem2.em | . . 3 ⊢ (𝜑 → EXMID) | |
| 19 | exmidontriimlem1 7399 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) ∧ EXMID) → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | |
| 20 | 17, 18, 19 | syl2anc 411 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 21 | 9, 14, 16, 20 | mpjao3dan 1341 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 EXMIDwem 4277 Oncon0 4453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3888 df-tr 4182 df-exmid 4278 df-iord 4456 df-on 4458 |
| This theorem is referenced by: exmidontriimlem3 7401 |
| Copyright terms: Public domain | W3C validator |