ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem2 GIF version

Theorem exmidontriimlem2 7199
Description: Lemma for exmidontriim 7202. (Contributed by Jim Kingdon, 12-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem2.b (𝜑𝐵 ∈ On)
exmidontriimlem2.em (𝜑EXMID)
exmidontriimlem2.hb (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
Assertion
Ref Expression
exmidontriimlem2 (𝜑 → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝜑,𝑦

Proof of Theorem exmidontriimlem2
StepHypRef Expression
1 exmidontriimlem2.b . . . . . 6 (𝜑𝐵 ∈ On)
21ad2antrr 485 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝐵 ∈ On)
3 simpr 109 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝐴𝑦)
4 simplr 525 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝑦𝐵)
53, 4jca 304 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → (𝐴𝑦𝑦𝐵))
6 ontr1 4374 . . . . 5 (𝐵 ∈ On → ((𝐴𝑦𝑦𝐵) → 𝐴𝐵))
72, 5, 6sylc 62 . . . 4 (((𝜑𝑦𝐵) ∧ 𝐴𝑦) → 𝐴𝐵)
87r19.29an 2612 . . 3 ((𝜑 ∧ ∃𝑦𝐵 𝐴𝑦) → 𝐴𝐵)
98orcd 728 . 2 ((𝜑 ∧ ∃𝑦𝐵 𝐴𝑦) → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
10 simpr 109 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴 = 𝑦) → 𝐴 = 𝑦)
11 simplr 525 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝐴 = 𝑦) → 𝑦𝐵)
1210, 11eqeltrd 2247 . . . 4 (((𝜑𝑦𝐵) ∧ 𝐴 = 𝑦) → 𝐴𝐵)
1312r19.29an 2612 . . 3 ((𝜑 ∧ ∃𝑦𝐵 𝐴 = 𝑦) → 𝐴𝐵)
1413orcd 728 . 2 ((𝜑 ∧ ∃𝑦𝐵 𝐴 = 𝑦) → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
15 simpr 109 . . 3 ((𝜑 ∧ ∀𝑦𝐵 𝑦𝐴) → ∀𝑦𝐵 𝑦𝐴)
1615olcd 729 . 2 ((𝜑 ∧ ∀𝑦𝐵 𝑦𝐴) → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
17 exmidontriimlem2.hb . . 3 (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
18 exmidontriimlem2.em . . 3 (𝜑EXMID)
19 exmidontriimlem1 7198 . . 3 ((∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴) ∧ EXMID) → (∃𝑦𝐵 𝐴𝑦 ∨ ∃𝑦𝐵 𝐴 = 𝑦 ∨ ∀𝑦𝐵 𝑦𝐴))
2017, 18, 19syl2anc 409 . 2 (𝜑 → (∃𝑦𝐵 𝐴𝑦 ∨ ∃𝑦𝐵 𝐴 = 𝑦 ∨ ∀𝑦𝐵 𝑦𝐴))
219, 14, 16, 20mpjao3dan 1302 1 (𝜑 → (𝐴𝐵 ∨ ∀𝑦𝐵 𝑦𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3o 972   = wceq 1348  wcel 2141  wral 2448  wrex 2449  EXMIDwem 4180  Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-uni 3797  df-tr 4088  df-exmid 4181  df-iord 4351  df-on 4353
This theorem is referenced by:  exmidontriimlem3  7200
  Copyright terms: Public domain W3C validator