| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontriimlem2 | GIF version | ||
| Description: Lemma for exmidontriim 7292. (Contributed by Jim Kingdon, 12-Aug-2024.) |
| Ref | Expression |
|---|---|
| exmidontriimlem2.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| exmidontriimlem2.em | ⊢ (𝜑 → EXMID) |
| exmidontriimlem2.hb | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| exmidontriimlem2 | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidontriimlem2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 2 | 1 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐵 ∈ On) |
| 3 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝑦) | |
| 4 | simplr 528 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ 𝐵) | |
| 5 | 3, 4 | jca 306 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) |
| 6 | ontr1 4424 | . . . . 5 ⊢ (𝐵 ∈ On → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝐴 ∈ 𝐵)) | |
| 7 | 2, 5, 6 | sylc 62 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
| 8 | 7 | r19.29an 2639 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
| 9 | 8 | orcd 734 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 10 | simpr 110 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 = 𝑦) | |
| 11 | simplr 528 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝑦 ∈ 𝐵) | |
| 12 | 10, 11 | eqeltrd 2273 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
| 13 | 12 | r19.29an 2639 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
| 14 | 13 | orcd 734 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 15 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) | |
| 16 | 15 | olcd 735 | . 2 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 17 | exmidontriimlem2.hb | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) | |
| 18 | exmidontriimlem2.em | . . 3 ⊢ (𝜑 → EXMID) | |
| 19 | exmidontriimlem1 7288 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) ∧ EXMID) → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | |
| 20 | 17, 18, 19 | syl2anc 411 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| 21 | 9, 14, 16, 20 | mpjao3dan 1318 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 EXMIDwem 4227 Oncon0 4398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-uni 3840 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 |
| This theorem is referenced by: exmidontriimlem3 7290 |
| Copyright terms: Public domain | W3C validator |