![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmidontriimlem2 | GIF version |
Description: Lemma for exmidontriim 7254. (Contributed by Jim Kingdon, 12-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem2.b | ⊢ (𝜑 → 𝐵 ∈ On) |
exmidontriimlem2.em | ⊢ (𝜑 → EXMID) |
exmidontriimlem2.hb | ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) |
Ref | Expression |
---|---|
exmidontriimlem2 | ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidontriimlem2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
2 | 1 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐵 ∈ On) |
3 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝑦) | |
4 | simplr 528 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | jca 306 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) |
6 | ontr1 4407 | . . . . 5 ⊢ (𝐵 ∈ On → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝐴 ∈ 𝐵)) | |
7 | 2, 5, 6 | sylc 62 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
8 | 7 | r19.29an 2632 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → 𝐴 ∈ 𝐵) |
9 | 8 | orcd 734 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
10 | simpr 110 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 = 𝑦) | |
11 | simplr 528 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝑦 ∈ 𝐵) | |
12 | 10, 11 | eqeltrd 2266 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
13 | 12 | r19.29an 2632 | . . 3 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → 𝐴 ∈ 𝐵) |
14 | 13 | orcd 734 | . 2 ⊢ ((𝜑 ∧ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
15 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) | |
16 | 15 | olcd 735 | . 2 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
17 | exmidontriimlem2.hb | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) | |
18 | exmidontriimlem2.em | . . 3 ⊢ (𝜑 → EXMID) | |
19 | exmidontriimlem1 7250 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) ∧ EXMID) → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | |
20 | 17, 18, 19 | syl2anc 411 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝐴 ∈ 𝑦 ∨ ∃𝑦 ∈ 𝐵 𝐴 = 𝑦 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
21 | 9, 14, 16, 20 | mpjao3dan 1318 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 EXMIDwem 4212 Oncon0 4381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-uni 3825 df-tr 4117 df-exmid 4213 df-iord 4384 df-on 4386 |
This theorem is referenced by: exmidontriimlem3 7252 |
Copyright terms: Public domain | W3C validator |