ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2 GIF version

Theorem summodclem2 11323
Description: Lemma for summodc 11324. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summodclem2.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
summodclem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑘,𝑛   𝐵,𝑛   𝑓,𝐹,𝑘,𝑚   𝜑,𝑓,𝑚   𝑥,𝑓,𝑘,𝑚,𝑛   𝑦,𝑓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑗)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚)   𝐹(𝑥,𝑦,𝑗)   𝐺(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚,𝑛)

Proof of Theorem summodclem2
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5486 . . . . 5 (𝑚 = 𝑎 → (ℤ𝑚) = (ℤ𝑎))
21sseq2d 3172 . . . 4 (𝑚 = 𝑎 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑎)))
31raleqdv 2667 . . . 4 (𝑚 = 𝑎 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴))
4 seqeq1 10383 . . . . 5 (𝑚 = 𝑎 → seq𝑚( + , 𝐹) = seq𝑎( + , 𝐹))
54breq1d 3992 . . . 4 (𝑚 = 𝑎 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑎( + , 𝐹) ⇝ 𝑥))
62, 3, 53anbi123d 1302 . . 3 (𝑚 = 𝑎 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)))
76cbvrexv 2693 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥))
8 simplr3 1031 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ 𝑥)
9 simplr1 1029 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑎))
10 uzssz 9485 . . . . . . . . . . . 12 (ℤ𝑎) ⊆ ℤ
119, 10sstrdi 3154 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℤ)
12 1zzd 9218 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 1 ∈ ℤ)
13 simprl 521 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
1413nnzd 9312 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
1512, 14fzfigd 10366 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
16 simprr 522 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
17 f1oeng 6723 . . . . . . . . . . . . . 14 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
1815, 16, 17syl2anc 409 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
1918ensymd 6749 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
20 enfii 6840 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2115, 19, 20syl2anc 409 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
22 zfz1iso 10754 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2311, 21, 22syl2anc 409 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
24 isummo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
25 simplll 523 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
26 isummo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2725, 26sylan 281 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 eleq1w 2227 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2928dcbid 828 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
30 simpr2 994 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
3130ad2antrr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
32 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → 𝑘 ∈ (ℤ𝑎))
3329, 31, 32rspcdva 2835 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → DECID 𝑘𝐴)
34 summodclem2.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
35 eqid 2165 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0))
36 simprll 527 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
37 simpllr 524 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑎 ∈ ℤ)
38 simplr1 1029 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑎))
39 simprlr 528 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
40 simprr 522 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4124, 27, 33, 34, 35, 36, 37, 38, 39, 40summodclem2a 11322 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
4241expr 373 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4342exlimdv 1807 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4423, 43mpd 13 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
45 climuni 11234 . . . . . . . . 9 ((seq𝑎( + , 𝐹) ⇝ 𝑥 ∧ seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
468, 44, 45syl2anc 409 . . . . . . . 8 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4746anassrs 398 . . . . . . 7 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
48 eqeq2 2175 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4947, 48syl5ibrcom 156 . . . . . 6 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
5049expimpd 361 . . . . 5 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5150exlimdv 1807 . . . 4 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5251rexlimdva 2583 . . 3 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5352r19.29an 2608 . 2 ((𝜑 ∧ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
547, 53sylan2b 285 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824  w3a 968   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  csb 3045  wss 3116  ifcif 3520   class class class wbr 3982  cmpt 4043  1-1-ontowf1o 5187  cfv 5188   Isom wiso 5189  (class class class)co 5842  cen 6704  Fincfn 6706  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cn 8857  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  chash 10688  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  summodc  11324
  Copyright terms: Public domain W3C validator