ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2 GIF version

Theorem summodclem2 11737
Description: Lemma for summodc 11738. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summodclem2.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
summodclem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑘,𝑛   𝐵,𝑛   𝑓,𝐹,𝑘,𝑚   𝜑,𝑓,𝑚   𝑥,𝑓,𝑘,𝑚,𝑛   𝑦,𝑓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑗)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚)   𝐹(𝑥,𝑦,𝑗)   𝐺(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚,𝑛)

Proof of Theorem summodclem2
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5583 . . . . 5 (𝑚 = 𝑎 → (ℤ𝑚) = (ℤ𝑎))
21sseq2d 3224 . . . 4 (𝑚 = 𝑎 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑎)))
31raleqdv 2709 . . . 4 (𝑚 = 𝑎 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴))
4 seqeq1 10602 . . . . 5 (𝑚 = 𝑎 → seq𝑚( + , 𝐹) = seq𝑎( + , 𝐹))
54breq1d 4057 . . . 4 (𝑚 = 𝑎 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑎( + , 𝐹) ⇝ 𝑥))
62, 3, 53anbi123d 1325 . . 3 (𝑚 = 𝑎 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)))
76cbvrexv 2740 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥))
8 simplr3 1044 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ 𝑥)
9 simplr1 1042 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑎))
10 uzssz 9675 . . . . . . . . . . . 12 (ℤ𝑎) ⊆ ℤ
119, 10sstrdi 3206 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℤ)
12 1zzd 9406 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 1 ∈ ℤ)
13 simprl 529 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
1413nnzd 9501 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
1512, 14fzfigd 10583 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
16 simprr 531 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
17 f1oeng 6855 . . . . . . . . . . . . . 14 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
1815, 16, 17syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
1918ensymd 6882 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
20 enfii 6978 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2115, 19, 20syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
22 zfz1iso 10993 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2311, 21, 22syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
24 isummo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
25 simplll 533 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
26 isummo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2725, 26sylan 283 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 eleq1w 2267 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2928dcbid 840 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
30 simpr2 1007 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
3130ad2antrr 488 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
32 simpr 110 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → 𝑘 ∈ (ℤ𝑎))
3329, 31, 32rspcdva 2883 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → DECID 𝑘𝐴)
34 summodclem2.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
35 eqid 2206 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0))
36 simprll 537 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
37 simpllr 534 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑎 ∈ ℤ)
38 simplr1 1042 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑎))
39 simprlr 538 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
40 simprr 531 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4124, 27, 33, 34, 35, 36, 37, 38, 39, 40summodclem2a 11736 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
4241expr 375 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4342exlimdv 1843 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4423, 43mpd 13 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
45 climuni 11648 . . . . . . . . 9 ((seq𝑎( + , 𝐹) ⇝ 𝑥 ∧ seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
468, 44, 45syl2anc 411 . . . . . . . 8 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4746anassrs 400 . . . . . . 7 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
48 eqeq2 2216 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4947, 48syl5ibrcom 157 . . . . . 6 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
5049expimpd 363 . . . . 5 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5150exlimdv 1843 . . . 4 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5251rexlimdva 2624 . . 3 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5352r19.29an 2649 . 2 ((𝜑 ∧ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
547, 53sylan2b 287 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  csb 3094  wss 3167  ifcif 3572   class class class wbr 4047  cmpt 4109  1-1-ontowf1o 5275  cfv 5276   Isom wiso 5277  (class class class)co 5951  cen 6832  Fincfn 6834  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   < clt 8114  cle 8115  cn 9043  cz 9379  cuz 9655  ...cfz 10137  seqcseq 10599  chash 10927  cli 11633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634
This theorem is referenced by:  summodc  11738
  Copyright terms: Public domain W3C validator