| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5558 |
. . . . 5
⊢ (𝑚 = 𝑎 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑎)) |
| 2 | 1 | sseq2d 3213 |
. . . 4
⊢ (𝑚 = 𝑎 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑎))) |
| 3 | 1 | raleqdv 2699 |
. . . 4
⊢ (𝑚 = 𝑎 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴)) |
| 4 | | seqeq1 10542 |
. . . . 5
⊢ (𝑚 = 𝑎 → seq𝑚( + , 𝐹) = seq𝑎( + , 𝐹)) |
| 5 | 4 | breq1d 4043 |
. . . 4
⊢ (𝑚 = 𝑎 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑎( + , 𝐹) ⇝ 𝑥)) |
| 6 | 2, 3, 5 | 3anbi123d 1323 |
. . 3
⊢ (𝑚 = 𝑎 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥))) |
| 7 | 6 | cbvrexv 2730 |
. 2
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) |
| 8 | | simplr3 1043 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑎( + , 𝐹) ⇝ 𝑥) |
| 9 | | simplr1 1041 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑎)) |
| 10 | | uzssz 9621 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘𝑎) ⊆ ℤ |
| 11 | 9, 10 | sstrdi 3195 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ ℤ) |
| 12 | | 1zzd 9353 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 1 ∈
ℤ) |
| 13 | | simprl 529 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ) |
| 14 | 13 | nnzd 9447 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℤ) |
| 15 | 12, 14 | fzfigd 10523 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ∈ Fin) |
| 16 | | simprr 531 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
| 17 | | f1oeng 6816 |
. . . . . . . . . . . . . 14
⊢
(((1...𝑚) ∈ Fin
∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) |
| 18 | 15, 16, 17 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ≈ 𝐴) |
| 19 | 18 | ensymd 6842 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ≈ (1...𝑚)) |
| 20 | | enfii 6935 |
. . . . . . . . . . . 12
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) |
| 21 | 15, 19, 20 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ∈ Fin) |
| 22 | | zfz1iso 10933 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 23 | 11, 21, 22 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 24 | | isummo.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 25 | | simplll 533 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑) |
| 26 | | isummo.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 27 | 25, 26 | sylan 283 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 28 | | eleq1w 2257 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
| 29 | 28 | dcbid 839 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
| 30 | | simpr2 1006 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴) |
| 31 | 30 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑎)) → ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴) |
| 32 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑎)) → 𝑘 ∈ (ℤ≥‘𝑎)) |
| 33 | 29, 31, 32 | rspcdva 2873 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑎)) → DECID
𝑘 ∈ 𝐴) |
| 34 | | summodclem2.g |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
| 35 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑔‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑔‘𝑛) / 𝑘⦌𝐵, 0)) |
| 36 | | simprll 537 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) |
| 37 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑎 ∈ ℤ) |
| 38 | | simplr1 1041 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑎)) |
| 39 | | simprlr 538 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
| 40 | | simprr 531 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 41 | 24, 27, 33, 34, 35, 36, 37, 38, 39, 40 | summodclem2a 11546 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) |
| 42 | 41 | expr 375 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))) |
| 43 | 42 | exlimdv 1833 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))) |
| 44 | 23, 43 | mpd 13 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) |
| 45 | | climuni 11458 |
. . . . . . . . 9
⊢
((seq𝑎( + , 𝐹) ⇝ 𝑥 ∧ seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
| 46 | 8, 44, 45 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
| 47 | 46 | anassrs 400 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
| 48 | | eqeq2 2206 |
. . . . . . 7
⊢ (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦 ↔ 𝑥 = (seq1( + , 𝐺)‘𝑚))) |
| 49 | 47, 48 | syl5ibrcom 157 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦)) |
| 50 | 49 | expimpd 363 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 51 | 50 | exlimdv 1833 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 52 | 51 | rexlimdva 2614 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 53 | 52 | r19.29an 2639 |
. 2
⊢ ((𝜑 ∧ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 54 | 7, 53 | sylan2b 287 |
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |