Step | Hyp | Ref
| Expression |
1 | | fveq2 5496 |
. . . . 5
⊢ (𝑚 = 𝑎 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑎)) |
2 | 1 | sseq2d 3177 |
. . . 4
⊢ (𝑚 = 𝑎 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑎))) |
3 | 1 | raleqdv 2671 |
. . . 4
⊢ (𝑚 = 𝑎 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴)) |
4 | | seqeq1 10404 |
. . . . 5
⊢ (𝑚 = 𝑎 → seq𝑚( + , 𝐹) = seq𝑎( + , 𝐹)) |
5 | 4 | breq1d 3999 |
. . . 4
⊢ (𝑚 = 𝑎 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑎( + , 𝐹) ⇝ 𝑥)) |
6 | 2, 3, 5 | 3anbi123d 1307 |
. . 3
⊢ (𝑚 = 𝑎 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥))) |
7 | 6 | cbvrexv 2697 |
. 2
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) |
8 | | simplr3 1036 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑎( + , 𝐹) ⇝ 𝑥) |
9 | | simplr1 1034 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑎)) |
10 | | uzssz 9506 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘𝑎) ⊆ ℤ |
11 | 9, 10 | sstrdi 3159 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ ℤ) |
12 | | 1zzd 9239 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 1 ∈
ℤ) |
13 | | simprl 526 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ) |
14 | 13 | nnzd 9333 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℤ) |
15 | 12, 14 | fzfigd 10387 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ∈ Fin) |
16 | | simprr 527 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
17 | | f1oeng 6735 |
. . . . . . . . . . . . . 14
⊢
(((1...𝑚) ∈ Fin
∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) |
18 | 15, 16, 17 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ≈ 𝐴) |
19 | 18 | ensymd 6761 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ≈ (1...𝑚)) |
20 | | enfii 6852 |
. . . . . . . . . . . 12
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) |
21 | 15, 19, 20 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ∈ Fin) |
22 | | zfz1iso 10776 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
23 | 11, 21, 22 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
24 | | isummo.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
25 | | simplll 528 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑) |
26 | | isummo.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
27 | 25, 26 | sylan 281 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
28 | | eleq1w 2231 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
29 | 28 | dcbid 833 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
30 | | simpr2 999 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴) |
31 | 30 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑎)) → ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴) |
32 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑎)) → 𝑘 ∈ (ℤ≥‘𝑎)) |
33 | 29, 31, 32 | rspcdva 2839 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑎)) → DECID
𝑘 ∈ 𝐴) |
34 | | summodclem2.g |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
35 | | eqid 2170 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑔‘𝑛) / 𝑘⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑔‘𝑛) / 𝑘⦌𝐵, 0)) |
36 | | simprll 532 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) |
37 | | simpllr 529 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑎 ∈ ℤ) |
38 | | simplr1 1034 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑎)) |
39 | | simprlr 533 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
40 | | simprr 527 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
41 | 24, 27, 33, 34, 35, 36, 37, 38, 39, 40 | summodclem2a 11344 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) |
42 | 41 | expr 373 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))) |
43 | 42 | exlimdv 1812 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))) |
44 | 23, 43 | mpd 13 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) |
45 | | climuni 11256 |
. . . . . . . . 9
⊢
((seq𝑎( + , 𝐹) ⇝ 𝑥 ∧ seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
46 | 8, 44, 45 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
47 | 46 | anassrs 398 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
48 | | eqeq2 2180 |
. . . . . . 7
⊢ (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦 ↔ 𝑥 = (seq1( + , 𝐺)‘𝑚))) |
49 | 47, 48 | syl5ibrcom 156 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑎) ∧ ∀𝑗 ∈ (ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦)) |
50 | 49 | expimpd 361 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
51 | 50 | exlimdv 1812 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
52 | 51 | rexlimdva 2587 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
53 | 52 | r19.29an 2612 |
. 2
⊢ ((𝜑 ∧ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑎) ∧ ∀𝑗 ∈
(ℤ≥‘𝑎)DECID 𝑗 ∈ 𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
54 | 7, 53 | sylan2b 285 |
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |