ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2 GIF version

Theorem summodclem2 11901
Description: Lemma for summodc 11902. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summodclem2.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
summodclem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑘,𝑛   𝐵,𝑛   𝑓,𝐹,𝑘,𝑚   𝜑,𝑓,𝑚   𝑥,𝑓,𝑘,𝑚,𝑛   𝑦,𝑓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑗)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚)   𝐹(𝑥,𝑦,𝑗)   𝐺(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚,𝑛)

Proof of Theorem summodclem2
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5629 . . . . 5 (𝑚 = 𝑎 → (ℤ𝑚) = (ℤ𝑎))
21sseq2d 3254 . . . 4 (𝑚 = 𝑎 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑎)))
31raleqdv 2734 . . . 4 (𝑚 = 𝑎 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴))
4 seqeq1 10680 . . . . 5 (𝑚 = 𝑎 → seq𝑚( + , 𝐹) = seq𝑎( + , 𝐹))
54breq1d 4093 . . . 4 (𝑚 = 𝑎 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑎( + , 𝐹) ⇝ 𝑥))
62, 3, 53anbi123d 1346 . . 3 (𝑚 = 𝑎 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)))
76cbvrexv 2766 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥))
8 simplr3 1065 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ 𝑥)
9 simplr1 1063 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑎))
10 uzssz 9750 . . . . . . . . . . . 12 (ℤ𝑎) ⊆ ℤ
119, 10sstrdi 3236 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℤ)
12 1zzd 9481 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 1 ∈ ℤ)
13 simprl 529 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
1413nnzd 9576 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
1512, 14fzfigd 10661 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
16 simprr 531 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
17 f1oeng 6916 . . . . . . . . . . . . . 14 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
1815, 16, 17syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
1918ensymd 6943 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
20 enfii 7044 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2115, 19, 20syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
22 zfz1iso 11071 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2311, 21, 22syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
24 isummo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
25 simplll 533 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
26 isummo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2725, 26sylan 283 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 eleq1w 2290 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2928dcbid 843 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
30 simpr2 1028 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
3130ad2antrr 488 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
32 simpr 110 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → 𝑘 ∈ (ℤ𝑎))
3329, 31, 32rspcdva 2912 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → DECID 𝑘𝐴)
34 summodclem2.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
35 eqid 2229 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0))
36 simprll 537 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
37 simpllr 534 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑎 ∈ ℤ)
38 simplr1 1063 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑎))
39 simprlr 538 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
40 simprr 531 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4124, 27, 33, 34, 35, 36, 37, 38, 39, 40summodclem2a 11900 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
4241expr 375 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4342exlimdv 1865 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4423, 43mpd 13 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
45 climuni 11812 . . . . . . . . 9 ((seq𝑎( + , 𝐹) ⇝ 𝑥 ∧ seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
468, 44, 45syl2anc 411 . . . . . . . 8 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4746anassrs 400 . . . . . . 7 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
48 eqeq2 2239 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4947, 48syl5ibrcom 157 . . . . . 6 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
5049expimpd 363 . . . . 5 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5150exlimdv 1865 . . . 4 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5251rexlimdva 2648 . . 3 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5352r19.29an 2673 . 2 ((𝜑 ∧ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
547, 53sylan2b 287 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  csb 3124  wss 3197  ifcif 3602   class class class wbr 4083  cmpt 4145  1-1-ontowf1o 5317  cfv 5318   Isom wiso 5319  (class class class)co 6007  cen 6893  Fincfn 6895  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   < clt 8189  cle 8190  cn 9118  cz 9454  cuz 9730  ...cfz 10212  seqcseq 10677  chash 11005  cli 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798
This theorem is referenced by:  summodc  11902
  Copyright terms: Public domain W3C validator