ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2 GIF version

Theorem summodclem2 10990
Description: Lemma for summodc 10991. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summodclem2.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
summodclem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚,𝑘,𝑛   𝐵,𝑛   𝑓,𝐹,𝑘,𝑚   𝜑,𝑓,𝑚   𝑥,𝑓,𝑘,𝑚,𝑛   𝑦,𝑓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑗)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚)   𝐹(𝑥,𝑦,𝑗)   𝐺(𝑥,𝑦,𝑓,𝑗,𝑘,𝑚,𝑛)

Proof of Theorem summodclem2
Dummy variables 𝑎 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5353 . . . . 5 (𝑚 = 𝑎 → (ℤ𝑚) = (ℤ𝑎))
21sseq2d 3077 . . . 4 (𝑚 = 𝑎 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑎)))
31raleqdv 2590 . . . 4 (𝑚 = 𝑎 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴))
4 seqeq1 10062 . . . . 5 (𝑚 = 𝑎 → seq𝑚( + , 𝐹) = seq𝑎( + , 𝐹))
54breq1d 3885 . . . 4 (𝑚 = 𝑎 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑎( + , 𝐹) ⇝ 𝑥))
62, 3, 53anbi123d 1258 . . 3 (𝑚 = 𝑎 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)))
76cbvrexv 2613 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥))
8 simplr3 993 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ 𝑥)
9 simplr1 991 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑎))
10 uzssz 9195 . . . . . . . . . . . 12 (ℤ𝑎) ⊆ ℤ
119, 10syl6ss 3059 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℤ)
12 1zzd 8933 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 1 ∈ ℤ)
13 simprl 501 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
1413nnzd 9024 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
1512, 14fzfigd 10045 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
16 simprr 502 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
17 f1oeng 6581 . . . . . . . . . . . . . 14 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
1815, 16, 17syl2anc 406 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
1918ensymd 6607 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
20 enfii 6697 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2115, 19, 20syl2anc 406 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
22 zfz1iso 10425 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2311, 21, 22syl2anc 406 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
24 isummo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
25 simplll 503 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
26 isummo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2725, 26sylan 279 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 eleq1w 2160 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2928dcbid 792 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
30 simpr2 956 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
3130ad2antrr 475 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴)
32 simpr 109 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → 𝑘 ∈ (ℤ𝑎))
3329, 31, 32rspcdva 2749 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑎)) → DECID 𝑘𝐴)
34 summodclem2.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))
35 eqid 2100 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑔𝑛) / 𝑘𝐵, 0))
36 simprll 507 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
37 simpllr 504 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑎 ∈ ℤ)
38 simplr1 991 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑎))
39 simprlr 508 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
40 simprr 502 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4124, 27, 33, 34, 35, 36, 37, 38, 39, 40summodclem2a 10989 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
4241expr 370 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4342exlimdv 1758 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
4423, 43mpd 13 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
45 climuni 10901 . . . . . . . . 9 ((seq𝑎( + , 𝐹) ⇝ 𝑥 ∧ seq𝑎( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
468, 44, 45syl2anc 406 . . . . . . . 8 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4746anassrs 395 . . . . . . 7 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
48 eqeq2 2109 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4947, 48syl5ibrcom 156 . . . . . 6 (((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
5049expimpd 358 . . . . 5 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5150exlimdv 1758 . . . 4 ((((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5251rexlimdva 2508 . . 3 (((𝜑𝑎 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
5352r19.29an 2532 . 2 ((𝜑 ∧ ∃𝑎 ∈ ℤ (𝐴 ⊆ (ℤ𝑎) ∧ ∀𝑗 ∈ (ℤ𝑎)DECID 𝑗𝐴 ∧ seq𝑎( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
547, 53sylan2b 283 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 786  w3a 930   = wceq 1299  wex 1436  wcel 1448  wral 2375  wrex 2376  csb 2955  wss 3021  ifcif 3421   class class class wbr 3875  cmpt 3929  1-1-ontowf1o 5058  cfv 5059   Isom wiso 5060  (class class class)co 5706  cen 6562  Fincfn 6564  cc 7498  0cc0 7500  1c1 7501   + caddc 7503   < clt 7672  cle 7673  cn 8578  cz 8906  cuz 9176  ...cfz 9631  seqcseq 10059  chash 10362  cli 10886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-ihash 10363  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-clim 10887
This theorem is referenced by:  summodc  10991
  Copyright terms: Public domain W3C validator