| Step | Hyp | Ref
 | Expression | 
| 1 |   | dfiin2g 3949 | 
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | 
| 2 | 1 | adantl 277 | 
. 2
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | 
| 3 |   | elisset 2777 | 
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) | 
| 4 | 3 | rgenw 2552 | 
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) | 
| 5 |   | r19.2m 3537 | 
. . . . . . . . 9
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) | 
| 6 | 4, 5 | mpan2 425 | 
. . . . . . . 8
⊢
(∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) | 
| 7 |   | r19.35-1 2647 | 
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) | 
| 8 | 6, 7 | syl 14 | 
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) | 
| 9 | 8 | imp 124 | 
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵) | 
| 10 |   | rexcom4 2786 | 
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 𝑦 = 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | 
| 11 | 9, 10 | sylib 122 | 
. . . . 5
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | 
| 12 |   | abid 2184 | 
. . . . . 6
⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | 
| 13 | 12 | exbii 1619 | 
. . . . 5
⊢
(∃𝑦 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | 
| 14 | 11, 13 | sylibr 134 | 
. . . 4
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑦 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | 
| 15 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑧 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | 
| 16 |   | nfsab1 2186 | 
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | 
| 17 |   | eleq1w 2257 | 
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) | 
| 18 | 15, 16, 17 | cbvex 1770 | 
. . . 4
⊢
(∃𝑦 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑧 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | 
| 19 | 14, 18 | sylib 122 | 
. . 3
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑧 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | 
| 20 |   | inteximm 4182 | 
. . 3
⊢
(∃𝑧 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | 
| 21 | 19, 20 | syl 14 | 
. 2
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | 
| 22 | 2, 21 | eqeltrd 2273 | 
1
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩
𝑥 ∈ 𝐴 𝐵 ∈ V) |