Step | Hyp | Ref
| Expression |
1 | | dfiin2g 3906 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
2 | 1 | adantl 275 |
. 2
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | | elisset 2744 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) |
4 | 3 | rgenw 2525 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) |
5 | | r19.2m 3501 |
. . . . . . . . 9
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) |
6 | 4, 5 | mpan2 423 |
. . . . . . . 8
⊢
(∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) |
7 | | r19.35-1 2620 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) |
8 | 6, 7 | syl 14 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) |
9 | 8 | imp 123 |
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵) |
10 | | rexcom4 2753 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 𝑦 = 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
11 | 9, 10 | sylib 121 |
. . . . 5
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
12 | | abid 2158 |
. . . . . 6
⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
13 | 12 | exbii 1598 |
. . . . 5
⊢
(∃𝑦 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
14 | 11, 13 | sylibr 133 |
. . . 4
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑦 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
15 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑧 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
16 | | nfsab1 2160 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
17 | | eleq1w 2231 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
18 | 15, 16, 17 | cbvex 1749 |
. . . 4
⊢
(∃𝑦 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑧 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
19 | 14, 18 | sylib 121 |
. . 3
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑧 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
20 | | inteximm 4135 |
. . 3
⊢
(∃𝑧 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
21 | 19, 20 | syl 14 |
. 2
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
22 | 2, 21 | eqeltrd 2247 |
1
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩
𝑥 ∈ 𝐴 𝐵 ∈ V) |