| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bndndx | GIF version | ||
| Description: A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.) |
| Ref | Expression |
|---|---|
| bndndx | ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arch 9305 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑥 < 𝑘) | |
| 2 | nnre 9056 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
| 3 | lelttr 8174 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 < 𝑘)) | |
| 4 | ltle 8173 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) | |
| 5 | 4 | 3adant2 1019 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) |
| 6 | 3, 5 | syld 45 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 ≤ 𝑘)) |
| 7 | 6 | exp5o 1229 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
| 8 | 7 | com3l 81 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
| 9 | 8 | imp4b 350 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))) |
| 10 | 9 | com23 78 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
| 11 | 2, 10 | sylan2 286 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
| 12 | 11 | reximdva 2609 | . . . 4 ⊢ (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
| 13 | 1, 12 | mpd 13 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘)) |
| 14 | r19.35-1 2657 | . . 3 ⊢ (∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘) → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) | |
| 15 | 13, 14 | syl 14 | . 2 ⊢ (𝑥 ∈ ℝ → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) |
| 16 | 15 | rexlimiv 2618 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 class class class wbr 4048 ℝcr 7937 < clt 8120 ≤ cle 8121 ℕcn 9049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-arch 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-xp 4686 df-cnv 4688 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-inn 9050 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |