ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bndndx GIF version

Theorem bndndx 9356
Description: A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
Assertion
Ref Expression
bndndx (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem bndndx
StepHypRef Expression
1 arch 9354 . . . 4 (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑥 < 𝑘)
2 nnre 9105 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3 lelttr 8223 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴𝑥𝑥 < 𝑘) → 𝐴 < 𝑘))
4 ltle 8222 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘𝐴𝑘))
543adant2 1040 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘𝐴𝑘))
63, 5syld 45 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴𝑥𝑥 < 𝑘) → 𝐴𝑘))
76exp5o 1250 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴𝑥 → (𝑥 < 𝑘𝐴𝑘)))))
87com3l 81 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴𝑥 → (𝑥 < 𝑘𝐴𝑘)))))
98imp4b 350 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → (𝑥 < 𝑘𝐴𝑘)))
109com23 78 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
112, 10sylan2 286 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
1211reximdva 2632 . . . 4 (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
131, 12mpd 13 . . 3 (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘))
14 r19.35-1 2681 . . 3 (∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘) → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘))
1513, 14syl 14 . 2 (𝑥 ∈ ℝ → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘))
1615rexlimiv 2642 1 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  cr 7986   < clt 8169  cle 8170  cn 9098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-inn 9099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator