ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bndndx GIF version

Theorem bndndx 9265
Description: A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
Assertion
Ref Expression
bndndx (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem bndndx
StepHypRef Expression
1 arch 9263 . . . 4 (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑥 < 𝑘)
2 nnre 9014 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3 lelttr 8132 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴𝑥𝑥 < 𝑘) → 𝐴 < 𝑘))
4 ltle 8131 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘𝐴𝑘))
543adant2 1018 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘𝐴𝑘))
63, 5syld 45 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴𝑥𝑥 < 𝑘) → 𝐴𝑘))
76exp5o 1228 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴𝑥 → (𝑥 < 𝑘𝐴𝑘)))))
87com3l 81 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴𝑥 → (𝑥 < 𝑘𝐴𝑘)))))
98imp4b 350 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → (𝑥 < 𝑘𝐴𝑘)))
109com23 78 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
112, 10sylan2 286 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
1211reximdva 2599 . . . 4 (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘)))
131, 12mpd 13 . . 3 (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘))
14 r19.35-1 2647 . . 3 (∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴𝑥) → 𝐴𝑘) → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘))
1513, 14syl 14 . 2 (𝑥 ∈ ℝ → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘))
1615rexlimiv 2608 1 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴𝑥) → ∃𝑘 ∈ ℕ 𝐴𝑘)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  wral 2475  wrex 2476   class class class wbr 4034  cr 7895   < clt 8078  cle 8079  cn 9007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-inn 9008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator