![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bndndx | GIF version |
Description: A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.) |
Ref | Expression |
---|---|
bndndx | ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arch 9227 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑥 < 𝑘) | |
2 | nnre 8979 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
3 | lelttr 8098 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 < 𝑘)) | |
4 | ltle 8097 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) | |
5 | 4 | 3adant2 1018 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) |
6 | 3, 5 | syld 45 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 ≤ 𝑘)) |
7 | 6 | exp5o 1228 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
8 | 7 | com3l 81 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
9 | 8 | imp4b 350 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))) |
10 | 9 | com23 78 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
11 | 2, 10 | sylan2 286 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
12 | 11 | reximdva 2596 | . . . 4 ⊢ (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
13 | 1, 12 | mpd 13 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘)) |
14 | r19.35-1 2644 | . . 3 ⊢ (∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘) → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) | |
15 | 13, 14 | syl 14 | . 2 ⊢ (𝑥 ∈ ℝ → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) |
16 | 15 | rexlimiv 2605 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 class class class wbr 4029 ℝcr 7861 < clt 8044 ≤ cle 8045 ℕcn 8972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1re 7956 ax-addrcl 7959 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-arch 7981 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4661 df-cnv 4663 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-inn 8973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |