Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bndndx | GIF version |
Description: A bounded real sequence 𝐴(𝑘) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.) |
Ref | Expression |
---|---|
bndndx | ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arch 9111 | . . . 4 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑥 < 𝑘) | |
2 | nnre 8864 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
3 | lelttr 7987 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 < 𝑘)) | |
4 | ltle 7986 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) | |
5 | 4 | 3adant2 1006 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 < 𝑘 → 𝐴 ≤ 𝑘)) |
6 | 3, 5 | syld 45 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘) → 𝐴 ≤ 𝑘)) |
7 | 6 | exp5o 1216 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
8 | 7 | com3l 81 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℝ → (𝐴 ∈ ℝ → (𝐴 ≤ 𝑥 → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))))) |
9 | 8 | imp4b 348 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → (𝑥 < 𝑘 → 𝐴 ≤ 𝑘))) |
10 | 9 | com23 78 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
11 | 2, 10 | sylan2 284 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑥 < 𝑘 → ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
12 | 11 | reximdva 2568 | . . . 4 ⊢ (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘))) |
13 | 1, 12 | mpd 13 | . . 3 ⊢ (𝑥 ∈ ℝ → ∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘)) |
14 | r19.35-1 2616 | . . 3 ⊢ (∃𝑘 ∈ ℕ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → 𝐴 ≤ 𝑘) → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) | |
15 | 13, 14 | syl 14 | . 2 ⊢ (𝑥 ∈ ℝ → (∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘)) |
16 | 15 | rexlimiv 2577 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥) → ∃𝑘 ∈ ℕ 𝐴 ≤ 𝑘) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 class class class wbr 3982 ℝcr 7752 < clt 7933 ≤ cle 7934 ℕcn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |