ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqtrdv GIF version

Theorem rexeqtrdv 2717
Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
rexeqtrdv.1 (𝜑 → ∃𝑥𝐴 𝜓)
rexeqtrdv.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rexeqtrdv (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqtrdv
StepHypRef Expression
1 rexeqtrdv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 rexeqtrdv.2 . . 3 (𝜑𝐴 = 𝐵)
32rexeqdv 2715 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
41, 3mpbid 147 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator