ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqtrdv GIF version

Theorem rexeqtrdv 2699
Description: Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
rexeqtrdv.1 (𝜑 → ∃𝑥𝐴 𝜓)
rexeqtrdv.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rexeqtrdv (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqtrdv
StepHypRef Expression
1 rexeqtrdv.1 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 rexeqtrdv.2 . . 3 (𝜑𝐴 = 𝐵)
32rexeqdv 2697 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
41, 3mpbid 147 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator