| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rexeqdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rexeq 2729 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: rexeqtrdv 2737 rexeqtrrdv 2739 rexeqbidv 2745 rexeqbidva 2747 fnunirn 5884 cbvexfo 5903 fival 7125 nninfwlpoimlemg 7330 nninfwlpoimlemginf 7331 nninfwlpoim 7334 nninfinfwlpo 7335 genipv 7684 exfzdc 10433 infssuzex 10440 nninfdcex 10444 zproddc 12076 ennnfonelemrnh 12973 grppropd 13536 dvdsrpropdg 14096 znunit 14608 cnpfval 14854 plyval 15391 uhgrvtxedgiedgb 15926 |
| Copyright terms: Public domain | W3C validator |