| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rexeqdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rexeq 2729 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: rexeqtrdv 2737 rexeqtrrdv 2739 rexeqbidv 2745 rexeqbidva 2747 fnunirn 5897 cbvexfo 5916 fival 7145 nninfwlpoimlemg 7350 nninfwlpoimlemginf 7351 nninfwlpoim 7354 nninfinfwlpo 7355 genipv 7704 exfzdc 10454 infssuzex 10461 nninfdcex 10465 zproddc 12098 ennnfonelemrnh 12995 grppropd 13558 dvdsrpropdg 14119 znunit 14631 cnpfval 14877 plyval 15414 uhgrvtxedgiedgb 15949 wlkvtxedg 16084 |
| Copyright terms: Public domain | W3C validator |