ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqdv GIF version

Theorem rexeqdv 2700
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
Hypothesis
Ref Expression
raleq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rexeqdv (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqdv
StepHypRef Expression
1 raleq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 rexeq 2694 . 2 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
31, 2syl 14 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481
This theorem is referenced by:  rexeqtrdv  2702  rexeqtrrdv  2704  rexeqbidv  2710  rexeqbidva  2712  fnunirn  5814  cbvexfo  5833  fival  7036  nninfwlpoimlemg  7241  nninfwlpoimlemginf  7242  nninfwlpoim  7244  genipv  7576  exfzdc  10316  infssuzex  10323  nninfdcex  10327  zproddc  11744  ennnfonelemrnh  12633  grppropd  13149  dvdsrpropdg  13703  znunit  14215  cnpfval  14431  plyval  14968
  Copyright terms: Public domain W3C validator