| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rexeqdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rexeq 2694 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: rexeqtrdv 2702 rexeqtrrdv 2704 rexeqbidv 2710 rexeqbidva 2712 fnunirn 5817 cbvexfo 5836 fival 7045 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 nninfwlpoim 7254 nninfinfwlpo 7255 genipv 7595 exfzdc 10335 infssuzex 10342 nninfdcex 10346 zproddc 11763 ennnfonelemrnh 12660 grppropd 13221 dvdsrpropdg 13781 znunit 14293 cnpfval 14539 plyval 15076 |
| Copyright terms: Public domain | W3C validator |