| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqdv | GIF version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
| Ref | Expression |
|---|---|
| raleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rexeqdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rexeq 2704 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 |
| This theorem is referenced by: rexeqtrdv 2712 rexeqtrrdv 2714 rexeqbidv 2720 rexeqbidva 2722 fnunirn 5848 cbvexfo 5867 fival 7086 nninfwlpoimlemg 7291 nninfwlpoimlemginf 7292 nninfwlpoim 7295 nninfinfwlpo 7296 genipv 7637 exfzdc 10386 infssuzex 10393 nninfdcex 10397 zproddc 11960 ennnfonelemrnh 12857 grppropd 13419 dvdsrpropdg 13979 znunit 14491 cnpfval 14737 plyval 15274 |
| Copyright terms: Public domain | W3C validator |