ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqdv GIF version

Theorem rexeqdv 2735
Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
Hypothesis
Ref Expression
raleq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
rexeqdv (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rexeqdv
StepHypRef Expression
1 raleq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 rexeq 2729 . 2 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
31, 2syl 14 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  rexeqtrdv  2737  rexeqtrrdv  2739  rexeqbidv  2745  rexeqbidva  2747  fnunirn  5884  cbvexfo  5903  fival  7125  nninfwlpoimlemg  7330  nninfwlpoimlemginf  7331  nninfwlpoim  7334  nninfinfwlpo  7335  genipv  7684  exfzdc  10433  infssuzex  10440  nninfdcex  10444  zproddc  12076  ennnfonelemrnh  12973  grppropd  13536  dvdsrpropdg  14096  znunit  14608  cnpfval  14854  plyval  15391  uhgrvtxedgiedgb  15926
  Copyright terms: Public domain W3C validator