ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4or GIF version

Theorem sb4or 1847
Description: One direction of a simplified definition of substitution when variables are distinct. Similar to sb4 1846 but stronger in intuitionistic logic. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
sb4or (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem sb4or
StepHypRef Expression
1 equs5or 1844 . 2 (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
2 nfe1 1510 . . . . . 6 𝑥𝑥(𝑥 = 𝑦𝜑)
3 nfa1 1555 . . . . . 6 𝑥𝑥(𝑥 = 𝑦𝜑)
42, 3nfim 1586 . . . . 5 𝑥(∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
54nfri 1533 . . . 4 ((∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑥(∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
6 sb1 1780 . . . . 5 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
76imim1i 60 . . . 4 ((∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
85, 7alrimih 1483 . . 3 ((∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
98orim2i 762 . 2 ((∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
101, 9ax-mp 5 1 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wal 1362  wex 1506  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sb4bor  1849  nfsb2or  1851
  Copyright terms: Public domain W3C validator