| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb4or | GIF version | ||
| Description: One direction of a simplified definition of substitution when variables are distinct. Similar to sb4 1856 but stronger in intuitionistic logic. (Contributed by Jim Kingdon, 2-Feb-2018.) |
| Ref | Expression |
|---|---|
| sb4or | ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equs5or 1854 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | nfe1 1520 | . . . . . 6 ⊢ Ⅎ𝑥∃𝑥(𝑥 = 𝑦 ∧ 𝜑) | |
| 3 | nfa1 1565 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
| 4 | 2, 3 | nfim 1596 | . . . . 5 ⊢ Ⅎ𝑥(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 5 | 4 | nfri 1543 | . . . 4 ⊢ ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑥(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 6 | sb1 1790 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 7 | 6 | imim1i 60 | . . . 4 ⊢ ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 8 | 5, 7 | alrimih 1493 | . . 3 ⊢ ((∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 9 | 8 | orim2i 763 | . 2 ⊢ ((∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 10 | 1, 9 | ax-mp 5 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 ∀wal 1371 ∃wex 1516 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sb4bor 1859 nfsb2or 1861 |
| Copyright terms: Public domain | W3C validator |