Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbbii | GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 1762 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 1762 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑) |
6 | 3, 5 | impbii 126 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-sb 1761 |
This theorem is referenced by: sbco2vh 1943 equsb3 1949 sbn 1950 sbim 1951 sbor 1952 sban 1953 sb3an 1956 sbbi 1957 sbco2h 1962 sbco2d 1964 sbco2vd 1965 sbco3v 1967 sbco3 1972 sbcom2v2 1984 sbcom2 1985 dfsb7 1989 sb7f 1990 sb7af 1991 sbal 1998 sbal1 2000 sbex 2002 sbco4lem 2004 sbco4 2005 sbmo 2083 elsb1 2153 elsb2 2154 eqsb1 2279 clelsb1 2280 clelsb2 2281 cbvabw 2298 clelsb1f 2321 sbabel 2344 sbralie 2719 sbcco 2982 exss 4221 inopab 4752 isarep1 5294 bezoutlemnewy 11962 |
Copyright terms: Public domain | W3C validator |