![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbbii | GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 118 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 1694 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
4 | 1 | biimpri 131 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 1694 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑) |
6 | 3, 5 | impbii 124 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 [wsb 1692 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-sb 1693 |
This theorem is referenced by: sbco2v 1869 equsb3 1873 sbn 1874 sbim 1875 sbor 1876 sban 1877 sb3an 1880 sbbi 1881 sbco2h 1886 sbco2d 1888 sbco2vd 1889 sbco3v 1891 sbco3 1896 elsb3 1900 elsb4 1901 sbcom2v2 1910 sbcom2 1911 dfsb7 1915 sb7f 1916 sb7af 1917 sbal 1924 sbal1 1926 sbex 1928 sbco4lem 1930 sbco4 1931 sbmo 2007 eqsb3 2191 clelsb3 2192 clelsb4 2193 clelsb3f 2232 sbabel 2254 sbralie 2603 sbcco 2861 exss 4054 inopab 4568 isarep1 5100 bezoutlemnewy 11259 |
Copyright terms: Public domain | W3C validator |