Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbbii | GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 1757 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
4 | 1 | biimpri 132 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 1757 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑) |
6 | 3, 5 | impbii 125 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sbco2vh 1938 equsb3 1944 sbn 1945 sbim 1946 sbor 1947 sban 1948 sb3an 1951 sbbi 1952 sbco2h 1957 sbco2d 1959 sbco2vd 1960 sbco3v 1962 sbco3 1967 sbcom2v2 1979 sbcom2 1980 dfsb7 1984 sb7f 1985 sb7af 1986 sbal 1993 sbal1 1995 sbex 1997 sbco4lem 1999 sbco4 2000 sbmo 2078 elsb1 2148 elsb2 2149 eqsb1 2274 clelsb1 2275 clelsb2 2276 cbvabw 2293 clelsb1f 2316 sbabel 2339 sbralie 2714 sbcco 2976 exss 4212 inopab 4743 isarep1 5284 bezoutlemnewy 11951 |
Copyright terms: Public domain | W3C validator |