| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbii | GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 1810 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
| 4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 1810 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 |
| This theorem is referenced by: sbco2vh 1996 equsb3 2002 sbn 2003 sbim 2004 sbor 2005 sban 2006 sb3an 2009 sbbi 2010 sbco2h 2015 sbco2d 2017 sbco2vd 2018 sbco3v 2020 sbco3 2025 sbcom2v2 2037 sbcom2 2038 dfsb7 2042 sb7f 2043 sb7af 2044 sbal 2051 sbal1 2053 sbex 2055 sbco4lem 2057 sbco4 2058 sbmo 2137 elsb1 2207 elsb2 2208 eqsb1 2333 clelsb1 2334 clelsb2 2335 cbvabw 2352 clelsb1f 2376 sbabel 2399 sbralie 2783 sbcco 3050 exss 4312 inopab 4851 isarep1 5403 bezoutlemnewy 12503 |
| Copyright terms: Public domain | W3C validator |