Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbbii | GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 1752 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
4 | 1 | biimpri 132 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 1752 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑) |
6 | 3, 5 | impbii 125 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbco2vh 1933 equsb3 1939 sbn 1940 sbim 1941 sbor 1942 sban 1943 sb3an 1946 sbbi 1947 sbco2h 1952 sbco2d 1954 sbco2vd 1955 sbco3v 1957 sbco3 1962 sbcom2v2 1974 sbcom2 1975 dfsb7 1979 sb7f 1980 sb7af 1981 sbal 1988 sbal1 1990 sbex 1992 sbco4lem 1994 sbco4 1995 sbmo 2073 elsb1 2143 elsb2 2144 eqsb1 2270 clelsb1 2271 clelsb2 2272 cbvabw 2289 clelsb1f 2312 sbabel 2335 sbralie 2710 sbcco 2972 exss 4205 inopab 4736 isarep1 5274 bezoutlemnewy 11929 |
Copyright terms: Public domain | W3C validator |