| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbbii | GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 1788 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) |
| 4 | 1 | biimpri 133 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 1788 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 |
| This theorem is referenced by: sbco2vh 1974 equsb3 1980 sbn 1981 sbim 1982 sbor 1983 sban 1984 sb3an 1987 sbbi 1988 sbco2h 1993 sbco2d 1995 sbco2vd 1996 sbco3v 1998 sbco3 2003 sbcom2v2 2015 sbcom2 2016 dfsb7 2020 sb7f 2021 sb7af 2022 sbal 2029 sbal1 2031 sbex 2033 sbco4lem 2035 sbco4 2036 sbmo 2114 elsb1 2184 elsb2 2185 eqsb1 2310 clelsb1 2311 clelsb2 2312 cbvabw 2329 clelsb1f 2353 sbabel 2376 sbralie 2757 sbcco 3022 exss 4276 inopab 4815 isarep1 5366 bezoutlemnewy 12367 |
| Copyright terms: Public domain | W3C validator |