ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb3 GIF version

Theorem sb3 1831
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb3 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))

Proof of Theorem sb3
StepHypRef Expression
1 equs5 1829 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
2 sb2 1767 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
31, 2syl6 33 1 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1351  wex 1492  [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator