| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbid | GIF version | ||
| Description: Analog of sbid 1788 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) | 
| Ref | Expression | 
|---|---|
| csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-csb 3085 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
| 2 | sbcid 3005 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2312 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} | 
| 4 | abid2 2317 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 5 | 1, 3, 4 | 3eqtri 2221 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 {cab 2182 [wsbc 2989 ⦋csb 3084 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: csbeq1a 3093 fvmpt2 5645 fsumsplitf 11573 ctiunctlemfo 12656 | 
| Copyright terms: Public domain | W3C validator |