![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbid | GIF version |
Description: Analog of sbid 1774 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbid | ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3058 | . 2 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} | |
2 | sbcid 2978 | . . 3 ⊢ ([𝑥 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
3 | 2 | abbii 2293 | . 2 ⊢ {𝑦 ∣ [𝑥 / 𝑥]𝑦 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐴} |
4 | abid2 2298 | . 2 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
5 | 1, 3, 4 | 3eqtri 2202 | 1 ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 {cab 2163 [wsbc 2962 ⦋csb 3057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-sbc 2963 df-csb 3058 |
This theorem is referenced by: csbeq1a 3066 fvmpt2 5598 fsumsplitf 11409 ctiunctlemfo 12432 |
Copyright terms: Public domain | W3C validator |