ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid GIF version

Theorem csbid 3132
Description: Analog of sbid 1820 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3125 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3044 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2345 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2350 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2254 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  {cab 2215  [wsbc 3028  csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-sbc 3029  df-csb 3125
This theorem is referenced by:  csbeq1a  3133  fvmpt2  5720  fsumsplitf  11927  ctiunctlemfo  13018
  Copyright terms: Public domain W3C validator