ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid GIF version

Theorem csbid 3112
Description: Analog of sbid 1800 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3105 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3024 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2325 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2330 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2234 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wcel 2180  {cab 2195  [wsbc 3008  csb 3104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-sbc 3009  df-csb 3105
This theorem is referenced by:  csbeq1a  3113  fvmpt2  5691  fsumsplitf  11885  ctiunctlemfo  12976
  Copyright terms: Public domain W3C validator