ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid GIF version

Theorem csbid 3053
Description: Analog of sbid 1762 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3046 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 2966 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2282 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2287 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2190 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  {cab 2151  [wsbc 2951  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-sbc 2952  df-csb 3046
This theorem is referenced by:  csbeq1a  3054  fvmpt2  5569  fsumsplitf  11349  ctiunctlemfo  12372
  Copyright terms: Public domain W3C validator