ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbid GIF version

Theorem csbid 3102
Description: Analog of sbid 1798 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid 𝑥 / 𝑥𝐴 = 𝐴

Proof of Theorem csbid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3095 . 2 𝑥 / 𝑥𝐴 = {𝑦[𝑥 / 𝑥]𝑦𝐴}
2 sbcid 3015 . . 3 ([𝑥 / 𝑥]𝑦𝐴𝑦𝐴)
32abbii 2322 . 2 {𝑦[𝑥 / 𝑥]𝑦𝐴} = {𝑦𝑦𝐴}
4 abid2 2327 . 2 {𝑦𝑦𝐴} = 𝐴
51, 3, 43eqtri 2231 1 𝑥 / 𝑥𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  {cab 2192  [wsbc 2999  csb 3094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-sbc 3000  df-csb 3095
This theorem is referenced by:  csbeq1a  3103  fvmpt2  5670  fsumsplitf  11763  ctiunctlemfo  12854
  Copyright terms: Public domain W3C validator