Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findes GIF version

Theorem bj-findes 13179
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 13177 for explanations. From this version, it is easy to prove findes 4517. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-findes (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)

Proof of Theorem bj-findes
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . 4 𝑦𝜑
2 nfv 1508 . . . 4 𝑦[suc 𝑥 / 𝑥]𝜑
31, 2nfim 1551 . . 3 𝑦(𝜑[suc 𝑥 / 𝑥]𝜑)
4 nfs1v 1912 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 nfsbc1v 2927 . . . 4 𝑥[suc 𝑦 / 𝑥]𝜑
64, 5nfim 1551 . . 3 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
7 sbequ12 1744 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
8 suceq 4324 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
98sbceq1d 2914 . . . 4 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
107, 9imbi12d 233 . . 3 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
113, 6, 10cbvral 2650 . 2 (∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
12 nfsbc1v 2927 . . 3 𝑥[∅ / 𝑥]𝜑
13 sbceq1a 2918 . . . 4 (𝑥 = ∅ → (𝜑[∅ / 𝑥]𝜑))
1413biimprd 157 . . 3 (𝑥 = ∅ → ([∅ / 𝑥]𝜑𝜑))
15 sbequ1 1741 . . 3 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
16 sbceq1a 2918 . . . 4 (𝑥 = suc 𝑦 → (𝜑[suc 𝑦 / 𝑥]𝜑))
1716biimprd 157 . . 3 (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑𝜑))
1812, 4, 5, 14, 15, 17bj-findis 13177 . 2 (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
1911, 18sylan2b 285 1 (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  [wsb 1735  wral 2416  [wsbc 2909  c0 3363  suc csuc 4287  ωcom 4504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-nul 4054  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-bd0 13011  ax-bdim 13012  ax-bdan 13013  ax-bdor 13014  ax-bdn 13015  ax-bdal 13016  ax-bdex 13017  ax-bdeq 13018  ax-bdel 13019  ax-bdsb 13020  ax-bdsep 13082  ax-infvn 13139
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-suc 4293  df-iom 4505  df-bdc 13039  df-bj-ind 13125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator