Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findes GIF version

Theorem bj-findes 15637
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 15635 for explanations. From this version, it is easy to prove findes 4640. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-findes (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)

Proof of Theorem bj-findes
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . . 4 𝑦𝜑
2 nfv 1542 . . . 4 𝑦[suc 𝑥 / 𝑥]𝜑
31, 2nfim 1586 . . 3 𝑦(𝜑[suc 𝑥 / 𝑥]𝜑)
4 nfs1v 1958 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 nfsbc1v 3008 . . . 4 𝑥[suc 𝑦 / 𝑥]𝜑
64, 5nfim 1586 . . 3 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
7 sbequ12 1785 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
8 suceq 4438 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
98sbceq1d 2994 . . . 4 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
107, 9imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
113, 6, 10cbvral 2725 . 2 (∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
12 nfsbc1v 3008 . . 3 𝑥[∅ / 𝑥]𝜑
13 sbceq1a 2999 . . . 4 (𝑥 = ∅ → (𝜑[∅ / 𝑥]𝜑))
1413biimprd 158 . . 3 (𝑥 = ∅ → ([∅ / 𝑥]𝜑𝜑))
15 sbequ1 1782 . . 3 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
16 sbceq1a 2999 . . . 4 (𝑥 = suc 𝑦 → (𝜑[suc 𝑦 / 𝑥]𝜑))
1716biimprd 158 . . 3 (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑𝜑))
1812, 4, 5, 14, 15, 17bj-findis 15635 . 2 (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
1911, 18sylan2b 287 1 (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  [wsb 1776  wral 2475  [wsbc 2989  c0 3451  suc csuc 4401  ωcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4160  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-bd0 15469  ax-bdim 15470  ax-bdan 15471  ax-bdor 15472  ax-bdn 15473  ax-bdal 15474  ax-bdex 15475  ax-bdeq 15476  ax-bdel 15477  ax-bdsb 15478  ax-bdsep 15540  ax-infvn 15597
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-suc 4407  df-iom 4628  df-bdc 15497  df-bj-ind 15583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator