![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findes | GIF version |
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 15449 for explanations. From this version, it is easy to prove findes 4633. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findes | ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑦[suc 𝑥 / 𝑥]𝜑 | |
3 | 1, 2 | nfim 1583 | . . 3 ⊢ Ⅎ𝑦(𝜑 → [suc 𝑥 / 𝑥]𝜑) |
4 | nfs1v 1955 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
5 | nfsbc1v 3004 | . . . 4 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
6 | 4, 5 | nfim 1583 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
7 | sbequ12 1782 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | suceq 4431 | . . . . 5 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
9 | 8 | sbceq1d 2990 | . . . 4 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
10 | 7, 9 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
11 | 3, 6, 10 | cbvral 2722 | . 2 ⊢ (∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
12 | nfsbc1v 3004 | . . 3 ⊢ Ⅎ𝑥[∅ / 𝑥]𝜑 | |
13 | sbceq1a 2995 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ [∅ / 𝑥]𝜑)) | |
14 | 13 | biimprd 158 | . . 3 ⊢ (𝑥 = ∅ → ([∅ / 𝑥]𝜑 → 𝜑)) |
15 | sbequ1 1779 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
16 | sbceq1a 2995 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
17 | 16 | biimprd 158 | . . 3 ⊢ (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑 → 𝜑)) |
18 | 12, 4, 5, 14, 15, 17 | bj-findis 15449 | . 2 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
19 | 11, 18 | sylan2b 287 | 1 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 [wsb 1773 ∀wral 2472 [wsbc 2985 ∅c0 3446 suc csuc 4394 ωcom 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4155 ax-pr 4238 ax-un 4462 ax-setind 4567 ax-bd0 15283 ax-bdim 15284 ax-bdan 15285 ax-bdor 15286 ax-bdn 15287 ax-bdal 15288 ax-bdex 15289 ax-bdeq 15290 ax-bdel 15291 ax-bdsb 15292 ax-bdsep 15354 ax-infvn 15411 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4400 df-iom 4621 df-bdc 15311 df-bj-ind 15397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |