| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findes | GIF version | ||
| Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 16300 for explanations. From this version, it is easy to prove findes 4694. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findes | ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑦[suc 𝑥 / 𝑥]𝜑 | |
| 3 | 1, 2 | nfim 1618 | . . 3 ⊢ Ⅎ𝑦(𝜑 → [suc 𝑥 / 𝑥]𝜑) |
| 4 | nfs1v 1990 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 5 | nfsbc1v 3047 | . . . 4 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
| 6 | 4, 5 | nfim 1618 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
| 7 | sbequ12 1817 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 8 | suceq 4492 | . . . . 5 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
| 9 | 8 | sbceq1d 3033 | . . . 4 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
| 10 | 7, 9 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
| 11 | 3, 6, 10 | cbvral 2761 | . 2 ⊢ (∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
| 12 | nfsbc1v 3047 | . . 3 ⊢ Ⅎ𝑥[∅ / 𝑥]𝜑 | |
| 13 | sbceq1a 3038 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ [∅ / 𝑥]𝜑)) | |
| 14 | 13 | biimprd 158 | . . 3 ⊢ (𝑥 = ∅ → ([∅ / 𝑥]𝜑 → 𝜑)) |
| 15 | sbequ1 1814 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 16 | sbceq1a 3038 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
| 17 | 16 | biimprd 158 | . . 3 ⊢ (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑 → 𝜑)) |
| 18 | 12, 4, 5, 14, 15, 17 | bj-findis 16300 | . 2 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
| 19 | 11, 18 | sylan2b 287 | 1 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 [wsb 1808 ∀wral 2508 [wsbc 3028 ∅c0 3491 suc csuc 4455 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-bd0 16134 ax-bdim 16135 ax-bdan 16136 ax-bdor 16137 ax-bdn 16138 ax-bdal 16139 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 ax-infvn 16262 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-bdc 16162 df-bj-ind 16248 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |