Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findes GIF version

Theorem bj-findes 16086
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 16084 for explanations. From this version, it is easy to prove findes 4664. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-findes (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)

Proof of Theorem bj-findes
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . . 4 𝑦𝜑
2 nfv 1552 . . . 4 𝑦[suc 𝑥 / 𝑥]𝜑
31, 2nfim 1596 . . 3 𝑦(𝜑[suc 𝑥 / 𝑥]𝜑)
4 nfs1v 1968 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 nfsbc1v 3021 . . . 4 𝑥[suc 𝑦 / 𝑥]𝜑
64, 5nfim 1596 . . 3 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
7 sbequ12 1795 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
8 suceq 4462 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
98sbceq1d 3007 . . . 4 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
107, 9imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
113, 6, 10cbvral 2735 . 2 (∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
12 nfsbc1v 3021 . . 3 𝑥[∅ / 𝑥]𝜑
13 sbceq1a 3012 . . . 4 (𝑥 = ∅ → (𝜑[∅ / 𝑥]𝜑))
1413biimprd 158 . . 3 (𝑥 = ∅ → ([∅ / 𝑥]𝜑𝜑))
15 sbequ1 1792 . . 3 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
16 sbceq1a 3012 . . . 4 (𝑥 = suc 𝑦 → (𝜑[suc 𝑦 / 𝑥]𝜑))
1716biimprd 158 . . 3 (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑𝜑))
1812, 4, 5, 14, 15, 17bj-findis 16084 . 2 (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
1911, 18sylan2b 287 1 (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  [wsb 1786  wral 2485  [wsbc 3002  c0 3464  suc csuc 4425  ωcom 4651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-nul 4181  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-bd0 15918  ax-bdim 15919  ax-bdan 15920  ax-bdor 15921  ax-bdn 15922  ax-bdal 15923  ax-bdex 15924  ax-bdeq 15925  ax-bdel 15926  ax-bdsb 15927  ax-bdsep 15989  ax-infvn 16046
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-pr 3645  df-uni 3860  df-int 3895  df-suc 4431  df-iom 4652  df-bdc 15946  df-bj-ind 16032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator