Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findes GIF version

Theorem bj-findes 14736
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 14734 for explanations. From this version, it is easy to prove findes 4603. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-findes (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)

Proof of Theorem bj-findes
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . . 4 𝑦𝜑
2 nfv 1528 . . . 4 𝑦[suc 𝑥 / 𝑥]𝜑
31, 2nfim 1572 . . 3 𝑦(𝜑[suc 𝑥 / 𝑥]𝜑)
4 nfs1v 1939 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 nfsbc1v 2982 . . . 4 𝑥[suc 𝑦 / 𝑥]𝜑
64, 5nfim 1572 . . 3 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
7 sbequ12 1771 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
8 suceq 4403 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
98sbceq1d 2968 . . . 4 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
107, 9imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
113, 6, 10cbvral 2700 . 2 (∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
12 nfsbc1v 2982 . . 3 𝑥[∅ / 𝑥]𝜑
13 sbceq1a 2973 . . . 4 (𝑥 = ∅ → (𝜑[∅ / 𝑥]𝜑))
1413biimprd 158 . . 3 (𝑥 = ∅ → ([∅ / 𝑥]𝜑𝜑))
15 sbequ1 1768 . . 3 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
16 sbceq1a 2973 . . . 4 (𝑥 = suc 𝑦 → (𝜑[suc 𝑦 / 𝑥]𝜑))
1716biimprd 158 . . 3 (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑𝜑))
1812, 4, 5, 14, 15, 17bj-findis 14734 . 2 (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
1911, 18sylan2b 287 1 (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  [wsb 1762  wral 2455  [wsbc 2963  c0 3423  suc csuc 4366  ωcom 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4130  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-bd0 14568  ax-bdim 14569  ax-bdan 14570  ax-bdor 14571  ax-bdn 14572  ax-bdal 14573  ax-bdex 14574  ax-bdeq 14575  ax-bdel 14576  ax-bdsb 14577  ax-bdsep 14639  ax-infvn 14696
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-sn 3599  df-pr 3600  df-uni 3811  df-int 3846  df-suc 4372  df-iom 4591  df-bdc 14596  df-bj-ind 14682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator