Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindes | GIF version |
Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 13839 for explanations. From this version, it is easy to prove the bounded version of findes 4580. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindes.bd | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
bj-bdfindes | ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1516 | . . . 4 ⊢ Ⅎ𝑦[suc 𝑥 / 𝑥]𝜑 | |
3 | 1, 2 | nfim 1560 | . . 3 ⊢ Ⅎ𝑦(𝜑 → [suc 𝑥 / 𝑥]𝜑) |
4 | nfs1v 1927 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
5 | nfsbc1v 2969 | . . . 4 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
6 | 4, 5 | nfim 1560 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
7 | sbequ12 1759 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | suceq 4380 | . . . . 5 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
9 | 8 | sbceq1d 2956 | . . . 4 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
10 | 7, 9 | imbi12d 233 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
11 | 3, 6, 10 | cbvral 2688 | . 2 ⊢ (∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
12 | bj-bdfindes.bd | . . 3 ⊢ BOUNDED 𝜑 | |
13 | nfsbc1v 2969 | . . 3 ⊢ Ⅎ𝑥[∅ / 𝑥]𝜑 | |
14 | sbceq1a 2960 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ [∅ / 𝑥]𝜑)) | |
15 | 14 | biimprd 157 | . . 3 ⊢ (𝑥 = ∅ → ([∅ / 𝑥]𝜑 → 𝜑)) |
16 | sbequ1 1756 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
17 | sbceq1a 2960 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
18 | 17 | biimprd 157 | . . 3 ⊢ (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑 → 𝜑)) |
19 | 12, 13, 4, 5, 15, 16, 18 | bj-bdfindis 13839 | . 2 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
20 | 11, 19 | sylan2b 285 | 1 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 [wsb 1750 ∀wral 2444 [wsbc 2951 ∅c0 3409 suc csuc 4343 ωcom 4567 BOUNDED wbd 13704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13705 ax-bdor 13708 ax-bdex 13711 ax-bdeq 13712 ax-bdel 13713 ax-bdsb 13714 ax-bdsep 13776 ax-infvn 13833 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13733 df-bj-ind 13819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |