| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindes | GIF version | ||
| Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 16082 for explanations. From this version, it is easy to prove the bounded version of findes 4669. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-bdfindes.bd | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| bj-bdfindes | ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑦[suc 𝑥 / 𝑥]𝜑 | |
| 3 | 1, 2 | nfim 1596 | . . 3 ⊢ Ⅎ𝑦(𝜑 → [suc 𝑥 / 𝑥]𝜑) |
| 4 | nfs1v 1968 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 5 | nfsbc1v 3024 | . . . 4 ⊢ Ⅎ𝑥[suc 𝑦 / 𝑥]𝜑 | |
| 6 | 4, 5 | nfim 1596 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑) |
| 7 | sbequ12 1795 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 8 | suceq 4467 | . . . . 5 ⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) | |
| 9 | 8 | sbceq1d 3010 | . . . 4 ⊢ (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) |
| 10 | 7, 9 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑))) |
| 11 | 3, 6, 10 | cbvral 2738 | . 2 ⊢ (∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) |
| 12 | bj-bdfindes.bd | . . 3 ⊢ BOUNDED 𝜑 | |
| 13 | nfsbc1v 3024 | . . 3 ⊢ Ⅎ𝑥[∅ / 𝑥]𝜑 | |
| 14 | sbceq1a 3015 | . . . 4 ⊢ (𝑥 = ∅ → (𝜑 ↔ [∅ / 𝑥]𝜑)) | |
| 15 | 14 | biimprd 158 | . . 3 ⊢ (𝑥 = ∅ → ([∅ / 𝑥]𝜑 → 𝜑)) |
| 16 | sbequ1 1792 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 17 | sbceq1a 3015 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ [suc 𝑦 / 𝑥]𝜑)) | |
| 18 | 17 | biimprd 158 | . . 3 ⊢ (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑 → 𝜑)) |
| 19 | 12, 13, 4, 5, 15, 16, 18 | bj-bdfindis 16082 | . 2 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑 → [suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
| 20 | 11, 19 | sylan2b 287 | 1 ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 [wsb 1786 ∀wral 2486 [wsbc 3005 ∅c0 3468 suc csuc 4430 ωcom 4656 BOUNDED wbd 15947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-bd0 15948 ax-bdor 15951 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 ax-infvn 16076 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |