Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindes GIF version

Theorem bj-bdfindes 15441
Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 15439 for explanations. From this version, it is easy to prove the bounded version of findes 4635. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-bdfindes.bd BOUNDED 𝜑
Assertion
Ref Expression
bj-bdfindes (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)

Proof of Theorem bj-bdfindes
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . 4 𝑦𝜑
2 nfv 1539 . . . 4 𝑦[suc 𝑥 / 𝑥]𝜑
31, 2nfim 1583 . . 3 𝑦(𝜑[suc 𝑥 / 𝑥]𝜑)
4 nfs1v 1955 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 nfsbc1v 3004 . . . 4 𝑥[suc 𝑦 / 𝑥]𝜑
64, 5nfim 1583 . . 3 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
7 sbequ12 1782 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
8 suceq 4433 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
98sbceq1d 2990 . . . 4 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
107, 9imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
113, 6, 10cbvral 2722 . 2 (∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
12 bj-bdfindes.bd . . 3 BOUNDED 𝜑
13 nfsbc1v 3004 . . 3 𝑥[∅ / 𝑥]𝜑
14 sbceq1a 2995 . . . 4 (𝑥 = ∅ → (𝜑[∅ / 𝑥]𝜑))
1514biimprd 158 . . 3 (𝑥 = ∅ → ([∅ / 𝑥]𝜑𝜑))
16 sbequ1 1779 . . 3 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
17 sbceq1a 2995 . . . 4 (𝑥 = suc 𝑦 → (𝜑[suc 𝑦 / 𝑥]𝜑))
1817biimprd 158 . . 3 (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑𝜑))
1912, 13, 4, 5, 15, 16, 18bj-bdfindis 15439 . 2 (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
2011, 19sylan2b 287 1 (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  [wsb 1773  wral 2472  [wsbc 2985  c0 3446  suc csuc 4396  ωcom 4622  BOUNDED wbd 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-infvn 15433
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator