ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6rf GIF version

Theorem sb6rf 1877
Description: Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb5rf.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
sb6rf (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))

Proof of Theorem sb6rf
StepHypRef Expression
1 sb5rf.1 . . 3 (𝜑 → ∀𝑦𝜑)
2 sbequ1 1792 . . . . 5 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
32equcoms 1732 . . . 4 (𝑦 = 𝑥 → (𝜑 → [𝑦 / 𝑥]𝜑))
43com12 30 . . 3 (𝜑 → (𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
51, 4alrimih 1493 . 2 (𝜑 → ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
6 sb2 1791 . . 3 (∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑) → [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)
71sbid2h 1873 . . 3 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
86, 7sylib 122 . 2 (∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑) → 𝜑)
95, 8impbii 126 1 (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-sb 1787
This theorem is referenced by:  2sb6rf  2019  eu1  2080
  Copyright terms: Public domain W3C validator