| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snjust | GIF version | ||
| Description: Soundness justification theorem for df-sn 3638. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| snjust | ⊢ {𝑥 ∣ 𝑥 = 𝐴} = {𝑦 ∣ 𝑦 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2211 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝐴 ↔ 𝑧 = 𝐴)) | |
| 2 | 1 | cbvabv 2329 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝐴} = {𝑧 ∣ 𝑧 = 𝐴} |
| 3 | eqeq1 2211 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 4 | 3 | cbvabv 2329 | . 2 ⊢ {𝑧 ∣ 𝑧 = 𝐴} = {𝑦 ∣ 𝑦 = 𝐴} |
| 5 | 2, 4 | eqtri 2225 | 1 ⊢ {𝑥 ∣ 𝑥 = 𝐴} = {𝑦 ∣ 𝑦 = 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 {cab 2190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |