ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snjust GIF version

Theorem snjust 3627
Description: Soundness justification theorem for df-sn 3628. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
snjust {𝑥𝑥 = 𝐴} = {𝑦𝑦 = 𝐴}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem snjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . 3 (𝑥 = 𝑧 → (𝑥 = 𝐴𝑧 = 𝐴))
21cbvabv 2321 . 2 {𝑥𝑥 = 𝐴} = {𝑧𝑧 = 𝐴}
3 eqeq1 2203 . . 3 (𝑧 = 𝑦 → (𝑧 = 𝐴𝑦 = 𝐴))
43cbvabv 2321 . 2 {𝑧𝑧 = 𝐴} = {𝑦𝑦 = 𝐴}
52, 4eqtri 2217 1 {𝑥𝑥 = 𝐴} = {𝑦𝑦 = 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator