![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvabv | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1489 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1489 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvab 2235 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1312 {cab 2099 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 |
This theorem is referenced by: cdeqab1 2868 difjust 3036 unjust 3038 injust 3040 uniiunlem 3149 dfif3 3451 pwjust 3475 snjust 3496 intab 3764 iotajust 5043 tfrlemi1 6181 tfr1onlemaccex 6197 tfrcllemaccex 6210 frecsuc 6256 isbth 6805 nqprlu 7297 recexpr 7388 caucvgprprlemval 7438 caucvgprprlemnbj 7443 caucvgprprlemaddq 7458 caucvgprprlem1 7459 caucvgprprlem2 7460 axcaucvg 7629 mertensabs 11192 bds 12732 |
Copyright terms: Public domain | W3C validator |