| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvabv | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvab 2320 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 {cab 2182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 |
| This theorem is referenced by: cdeqab1 2981 difjust 3158 unjust 3160 injust 3162 uniiunlem 3272 dfif3 3574 pwjust 3606 snjust 3627 intab 3903 iotajust 5218 tfrlemi1 6390 tfr1onlemaccex 6406 tfrcllemaccex 6419 frecsuc 6465 isbth 7033 nqprlu 7614 recexpr 7705 caucvgprprlemval 7755 caucvgprprlemnbj 7760 caucvgprprlemaddq 7775 caucvgprprlem1 7776 caucvgprprlem2 7777 axcaucvg 7967 mertensabs 11702 4sq 12579 bds 15497 |
| Copyright terms: Public domain | W3C validator |