ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvabv GIF version

Theorem cbvabv 2291
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvabv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvabv {𝑥𝜑} = {𝑦𝜓}
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvabv
StepHypRef Expression
1 nfv 1516 . 2 𝑦𝜑
2 nfv 1516 . 2 𝑥𝜓
3 cbvabv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvab 2290 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158
This theorem is referenced by:  cdeqab1  2943  difjust  3117  unjust  3119  injust  3121  uniiunlem  3231  dfif3  3533  pwjust  3560  snjust  3581  intab  3853  iotajust  5152  tfrlemi1  6300  tfr1onlemaccex  6316  tfrcllemaccex  6329  frecsuc  6375  isbth  6932  nqprlu  7488  recexpr  7579  caucvgprprlemval  7629  caucvgprprlemnbj  7634  caucvgprprlemaddq  7649  caucvgprprlem1  7650  caucvgprprlem2  7651  axcaucvg  7841  mertensabs  11478  bds  13733
  Copyright terms: Public domain W3C validator