| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvabv | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvab 2331 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 {cab 2193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 |
| This theorem is referenced by: cdeqab1 2997 difjust 3175 unjust 3177 injust 3179 uniiunlem 3290 dfif3 3593 pwjust 3627 snjust 3648 intab 3928 iotajust 5250 tfrlemi1 6441 tfr1onlemaccex 6457 tfrcllemaccex 6470 frecsuc 6516 isbth 7095 nqprlu 7695 recexpr 7786 caucvgprprlemval 7836 caucvgprprlemnbj 7841 caucvgprprlemaddq 7856 caucvgprprlem1 7857 caucvgprprlem2 7858 axcaucvg 8048 mertensabs 11963 4sq 12848 isuhgrm 15782 isushgrm 15783 isupgren 15806 isumgren 15816 bds 15986 |
| Copyright terms: Public domain | W3C validator |