Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvabv | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1508 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvab 2281 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 {cab 2143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 |
This theorem is referenced by: cdeqab1 2929 difjust 3103 unjust 3105 injust 3107 uniiunlem 3216 dfif3 3518 pwjust 3544 snjust 3565 intab 3836 iotajust 5131 tfrlemi1 6273 tfr1onlemaccex 6289 tfrcllemaccex 6302 frecsuc 6348 isbth 6904 nqprlu 7450 recexpr 7541 caucvgprprlemval 7591 caucvgprprlemnbj 7596 caucvgprprlemaddq 7611 caucvgprprlem1 7612 caucvgprprlem2 7613 axcaucvg 7803 mertensabs 11416 bds 13385 |
Copyright terms: Public domain | W3C validator |