Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvabv | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvab 2294 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 |
This theorem is referenced by: cdeqab1 2947 difjust 3122 unjust 3124 injust 3126 uniiunlem 3236 dfif3 3539 pwjust 3567 snjust 3588 intab 3860 iotajust 5159 tfrlemi1 6311 tfr1onlemaccex 6327 tfrcllemaccex 6340 frecsuc 6386 isbth 6944 nqprlu 7509 recexpr 7600 caucvgprprlemval 7650 caucvgprprlemnbj 7655 caucvgprprlemaddq 7670 caucvgprprlem1 7671 caucvgprprlem2 7672 axcaucvg 7862 mertensabs 11500 bds 13886 |
Copyright terms: Public domain | W3C validator |