ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvabv GIF version

Theorem cbvabv 2321
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvabv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvabv {𝑥𝜑} = {𝑦𝜓}
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvabv
StepHypRef Expression
1 nfv 1542 . 2 𝑦𝜑
2 nfv 1542 . 2 𝑥𝜓
3 cbvabv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvab 2320 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189
This theorem is referenced by:  cdeqab1  2981  difjust  3158  unjust  3160  injust  3162  uniiunlem  3273  dfif3  3575  pwjust  3607  snjust  3628  intab  3904  iotajust  5219  tfrlemi1  6399  tfr1onlemaccex  6415  tfrcllemaccex  6428  frecsuc  6474  isbth  7042  nqprlu  7631  recexpr  7722  caucvgprprlemval  7772  caucvgprprlemnbj  7777  caucvgprprlemaddq  7792  caucvgprprlem1  7793  caucvgprprlem2  7794  axcaucvg  7984  mertensabs  11719  4sq  12604  bds  15581
  Copyright terms: Public domain W3C validator