Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvabv | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvab 2290 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 |
This theorem is referenced by: cdeqab1 2943 difjust 3117 unjust 3119 injust 3121 uniiunlem 3231 dfif3 3533 pwjust 3560 snjust 3581 intab 3853 iotajust 5152 tfrlemi1 6300 tfr1onlemaccex 6316 tfrcllemaccex 6329 frecsuc 6375 isbth 6932 nqprlu 7488 recexpr 7579 caucvgprprlemval 7629 caucvgprprlemnbj 7634 caucvgprprlemaddq 7649 caucvgprprlem1 7650 caucvgprprlem2 7651 axcaucvg 7841 mertensabs 11478 bds 13733 |
Copyright terms: Public domain | W3C validator |