ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvabv GIF version

Theorem cbvabv 2318
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvabv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvabv {𝑥𝜑} = {𝑦𝜓}
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvabv
StepHypRef Expression
1 nfv 1539 . 2 𝑦𝜑
2 nfv 1539 . 2 𝑥𝜓
3 cbvabv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvab 2317 1 {𝑥𝜑} = {𝑦𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  {cab 2179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186
This theorem is referenced by:  cdeqab1  2977  difjust  3154  unjust  3156  injust  3158  uniiunlem  3268  dfif3  3570  pwjust  3602  snjust  3623  intab  3899  iotajust  5214  tfrlemi1  6385  tfr1onlemaccex  6401  tfrcllemaccex  6414  frecsuc  6460  isbth  7026  nqprlu  7607  recexpr  7698  caucvgprprlemval  7748  caucvgprprlemnbj  7753  caucvgprprlemaddq  7768  caucvgprprlem1  7769  caucvgprprlem2  7770  axcaucvg  7960  mertensabs  11680  4sq  12548  bds  15343
  Copyright terms: Public domain W3C validator