| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvabv | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvab 2353 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 |
| This theorem is referenced by: cdeqab1 3020 difjust 3198 unjust 3200 injust 3202 uniiunlem 3313 dfif3 3616 pwjust 3650 snjust 3671 intab 3951 iotajust 5276 cbviotavw 5283 tfrlemi1 6476 tfr1onlemaccex 6492 tfrcllemaccex 6505 frecsuc 6551 isbth 7130 nqprlu 7730 recexpr 7821 caucvgprprlemval 7871 caucvgprprlemnbj 7876 caucvgprprlemaddq 7891 caucvgprprlem1 7892 caucvgprprlem2 7893 axcaucvg 8083 mertensabs 12043 4sq 12928 isuhgrm 15865 isushgrm 15866 isupgren 15889 isumgren 15899 isuspgren 15949 isusgren 15950 bds 16172 |
| Copyright terms: Public domain | W3C validator |