| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sn | GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3646. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 3632 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1371 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1372 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2190 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1372 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff set class |
| This definition is referenced by: sneq 3643 elsng 3647 csbsng 3693 rabsn 3699 pw0 3779 iunid 3982 dfiota2 5232 uniabio 5241 dfimafn2 5627 fnsnfv 5637 snec 6682 fngsum 13162 igsumvalx 13163 bdcsn 15739 |
| Copyright terms: Public domain | W3C validator |