ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3628
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3636. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3622 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1363 . . . 4 class 𝑥
54, 1wceq 1364 . . 3 wff 𝑥 = 𝐴
65, 3cab 2182 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1364 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3633  elsng  3637  csbsng  3683  rabsn  3689  pw0  3769  iunid  3972  dfiota2  5220  uniabio  5229  dfimafn2  5610  fnsnfv  5620  snec  6655  fngsum  13031  igsumvalx  13032  bdcsn  15516
  Copyright terms: Public domain W3C validator