| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sn | GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3680. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 3666 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1394 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1395 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2215 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1395 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff set class |
| This definition is referenced by: sneq 3677 elsng 3681 csbsng 3727 rabsn 3733 pw0 3814 iunid 4020 dfiota2 5278 uniabio 5288 dfimafn2 5682 fnsnfv 5692 snec 6741 fngsum 13416 igsumvalx 13417 bdcsn 16191 |
| Copyright terms: Public domain | W3C validator |