ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3638
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3646. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3632 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1371 . . . 4 class 𝑥
54, 1wceq 1372 . . 3 wff 𝑥 = 𝐴
65, 3cab 2190 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1372 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3643  elsng  3647  csbsng  3693  rabsn  3699  pw0  3779  iunid  3982  dfiota2  5232  uniabio  5241  dfimafn2  5627  fnsnfv  5637  snec  6682  fngsum  13162  igsumvalx  13163  bdcsn  15739
  Copyright terms: Public domain W3C validator