| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-sn | GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3652. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 3638 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1372 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1373 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2192 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1373 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff set class |
| This definition is referenced by: sneq 3649 elsng 3653 csbsng 3699 rabsn 3705 pw0 3786 iunid 3992 dfiota2 5247 uniabio 5256 dfimafn2 5646 fnsnfv 5656 snec 6701 fngsum 13305 igsumvalx 13306 bdcsn 15975 |
| Copyright terms: Public domain | W3C validator |