![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-sn | GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3632. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 3618 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1363 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1364 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2179 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1364 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff set class |
This definition is referenced by: sneq 3629 elsng 3633 csbsng 3679 rabsn 3685 pw0 3765 iunid 3968 dfiota2 5216 uniabio 5225 dfimafn2 5606 fnsnfv 5616 snec 6650 fngsum 12971 igsumvalx 12972 bdcsn 15362 |
Copyright terms: Public domain | W3C validator |