ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3595
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3603. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3589 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1352 . . . 4 class 𝑥
54, 1wceq 1353 . . 3 wff 𝑥 = 𝐴
65, 3cab 2161 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1353 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3600  elsng  3604  csbsng  3650  rabsn  3656  pw0  3736  iunid  3937  dfiota2  5171  uniabio  5180  dfimafn2  5557  fnsnfv  5567  snec  6586  bdcsn  14182
  Copyright terms: Public domain W3C validator