| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-sn | GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3636. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 3622 | . 2 class {𝐴} | 
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1363 | . . . 4 class 𝑥 | 
| 5 | 4, 1 | wceq 1364 | . . 3 wff 𝑥 = 𝐴 | 
| 6 | 5, 3 | cab 2182 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} | 
| 7 | 2, 6 | wceq 1364 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | 
| Colors of variables: wff set class | 
| This definition is referenced by: sneq 3633 elsng 3637 csbsng 3683 rabsn 3689 pw0 3769 iunid 3972 dfiota2 5220 uniabio 5229 dfimafn2 5610 fnsnfv 5620 snec 6655 fngsum 13031 igsumvalx 13032 bdcsn 15516 | 
| Copyright terms: Public domain | W3C validator |