ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3589
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3597. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3583 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1347 . . . 4 class 𝑥
54, 1wceq 1348 . . 3 wff 𝑥 = 𝐴
65, 3cab 2156 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1348 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3594  elsng  3598  csbsng  3644  rabsn  3650  pw0  3727  iunid  3928  dfiota2  5161  uniabio  5170  dfimafn2  5546  fnsnfv  5555  snec  6574  bdcsn  13905
  Copyright terms: Public domain W3C validator