![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-sn | GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3488. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 3474 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1298 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1299 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2086 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1299 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff set class |
This definition is referenced by: sneq 3485 elsng 3489 csbsng 3531 rabsn 3537 pw0 3614 iunid 3815 dfiota2 5025 uniabio 5034 dfimafn2 5403 fnsnfv 5412 snec 6420 bdcsn 12649 |
Copyright terms: Public domain | W3C validator |