ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3599
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3607. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3593 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1352 . . . 4 class 𝑥
54, 1wceq 1353 . . 3 wff 𝑥 = 𝐴
65, 3cab 2163 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1353 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3604  elsng  3608  csbsng  3654  rabsn  3660  pw0  3740  iunid  3943  dfiota2  5180  uniabio  5189  dfimafn2  5566  fnsnfv  5576  snec  6596  bdcsn  14625
  Copyright terms: Public domain W3C validator