ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3625
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3633. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3619 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1363 . . . 4 class 𝑥
54, 1wceq 1364 . . 3 wff 𝑥 = 𝐴
65, 3cab 2179 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1364 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3630  elsng  3634  csbsng  3680  rabsn  3686  pw0  3766  iunid  3969  dfiota2  5217  uniabio  5226  dfimafn2  5607  fnsnfv  5617  snec  6652  fngsum  12974  igsumvalx  12975  bdcsn  15432
  Copyright terms: Public domain W3C validator