ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3598
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3606. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3592 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1352 . . . 4 class 𝑥
54, 1wceq 1353 . . 3 wff 𝑥 = 𝐴
65, 3cab 2163 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1353 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3603  elsng  3607  csbsng  3653  rabsn  3659  pw0  3739  iunid  3942  dfiota2  5179  uniabio  5188  dfimafn2  5565  fnsnfv  5575  snec  6595  bdcsn  14592
  Copyright terms: Public domain W3C validator