ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3480
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3488. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3474 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1298 . . . 4 class 𝑥
54, 1wceq 1299 . . 3 wff 𝑥 = 𝐴
65, 3cab 2086 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1299 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3485  elsng  3489  csbsng  3531  rabsn  3537  pw0  3614  iunid  3815  dfiota2  5025  uniabio  5034  dfimafn2  5403  fnsnfv  5412  snec  6420  bdcsn  12649
  Copyright terms: Public domain W3C validator