ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3624
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3632. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3618 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1363 . . . 4 class 𝑥
54, 1wceq 1364 . . 3 wff 𝑥 = 𝐴
65, 3cab 2179 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1364 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3629  elsng  3633  csbsng  3679  rabsn  3685  pw0  3765  iunid  3968  dfiota2  5216  uniabio  5225  dfimafn2  5606  fnsnfv  5616  snec  6650  fngsum  12971  igsumvalx  12972  bdcsn  15362
  Copyright terms: Public domain W3C validator