ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn GIF version

Definition df-sn 3582
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3590. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn {𝐴} = {𝑥𝑥 = 𝐴}
Distinct variable group:   𝑥,𝐴

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3 class 𝐴
21csn 3576 . 2 class {𝐴}
3 vx . . . . 5 setvar 𝑥
43cv 1342 . . . 4 class 𝑥
54, 1wceq 1343 . . 3 wff 𝑥 = 𝐴
65, 3cab 2151 . 2 class {𝑥𝑥 = 𝐴}
72, 6wceq 1343 1 wff {𝐴} = {𝑥𝑥 = 𝐴}
Colors of variables: wff set class
This definition is referenced by:  sneq  3587  elsng  3591  csbsng  3637  rabsn  3643  pw0  3720  iunid  3921  dfiota2  5154  uniabio  5163  dfimafn2  5536  fnsnfv  5545  snec  6562  bdcsn  13752
  Copyright terms: Public domain W3C validator