![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-sn | GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3633. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 3619 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1363 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1364 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2179 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1364 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff set class |
This definition is referenced by: sneq 3630 elsng 3634 csbsng 3680 rabsn 3686 pw0 3766 iunid 3969 dfiota2 5217 uniabio 5226 dfimafn2 5607 fnsnfv 5617 snec 6652 fngsum 12974 igsumvalx 12975 bdcsn 15432 |
Copyright terms: Public domain | W3C validator |