ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclr GIF version

Theorem vtoclr 4652
Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
vtoclr.1 Rel 𝑅
vtoclr.2 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
Assertion
Ref Expression
vtoclr ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑥,𝑧)

Proof of Theorem vtoclr
StepHypRef Expression
1 vtoclr.1 . . . . . 6 Rel 𝑅
21brrelex1i 4647 . . . . 5 (𝐴𝑅𝐵𝐴 ∈ V)
31brrelex2i 4648 . . . . 5 (𝐴𝑅𝐵𝐵 ∈ V)
42, 3jca 304 . . . 4 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
51brrelex2i 4648 . . . 4 (𝐵𝑅𝐶𝐶 ∈ V)
6 breq1 3985 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
76anbi1d 461 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝐶) ↔ (𝐴𝑅𝑦𝑦𝑅𝐶)))
8 breq1 3985 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑅𝐶𝐴𝑅𝐶))
97, 8imbi12d 233 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶) ↔ ((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶)))
109imbi2d 229 . . . . 5 (𝑥 = 𝐴 → ((𝐶 ∈ V → ((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶))))
11 breq2 3986 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
12 breq1 3985 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑅𝐶𝐵𝑅𝐶))
1311, 12anbi12d 465 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑦𝑅𝐶) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
1413imbi1d 230 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
1514imbi2d 229 . . . . 5 (𝑦 = 𝐵 → ((𝐶 ∈ V → ((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))))
16 breq2 3986 . . . . . . . 8 (𝑧 = 𝐶 → (𝑦𝑅𝑧𝑦𝑅𝐶))
1716anbi2d 460 . . . . . . 7 (𝑧 = 𝐶 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝐶)))
18 breq2 3986 . . . . . . 7 (𝑧 = 𝐶 → (𝑥𝑅𝑧𝑥𝑅𝐶))
1917, 18imbi12d 233 . . . . . 6 (𝑧 = 𝐶 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶)))
20 vtoclr.2 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
2119, 20vtoclg 2786 . . . . 5 (𝐶 ∈ V → ((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶))
2210, 15, 21vtocl2g 2790 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶 ∈ V → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
234, 5, 22syl2im 38 . . 3 (𝐴𝑅𝐵 → (𝐵𝑅𝐶 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2423imp 123 . 2 ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
2524pm2.43i 49 1 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726   class class class wbr 3982  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  domtr  6751
  Copyright terms: Public domain W3C validator