Proof of Theorem vtoclr
Step | Hyp | Ref
| Expression |
1 | | vtoclr.1 |
. . . . . 6
⊢ Rel 𝑅 |
2 | 1 | brrelex1i 4647 |
. . . . 5
⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
3 | 1 | brrelex2i 4648 |
. . . . 5
⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
4 | 2, 3 | jca 304 |
. . . 4
⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | 1 | brrelex2i 4648 |
. . . 4
⊢ (𝐵𝑅𝐶 → 𝐶 ∈ V) |
6 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) |
7 | 6 | anbi1d 461 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) ↔ (𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶))) |
8 | | breq1 3985 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥𝑅𝐶 ↔ 𝐴𝑅𝐶)) |
9 | 7, 8 | imbi12d 233 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶) ↔ ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶))) |
10 | 9 | imbi2d 229 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐶 ∈ V → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶)))) |
11 | | breq2 3986 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) |
12 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
13 | 11, 12 | anbi12d 465 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶))) |
14 | 13 | imbi1d 230 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶) ↔ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
15 | 14 | imbi2d 229 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐶 ∈ V → ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)))) |
16 | | breq2 3986 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝐶)) |
17 | 16 | anbi2d 460 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶))) |
18 | | breq2 3986 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝑥𝑅𝑧 ↔ 𝑥𝑅𝐶)) |
19 | 17, 18 | imbi12d 233 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶))) |
20 | | vtoclr.2 |
. . . . . 6
⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
21 | 19, 20 | vtoclg 2786 |
. . . . 5
⊢ (𝐶 ∈ V → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶)) |
22 | 10, 15, 21 | vtocl2g 2790 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶 ∈ V → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
23 | 4, 5, 22 | syl2im 38 |
. . 3
⊢ (𝐴𝑅𝐵 → (𝐵𝑅𝐶 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
24 | 23 | imp 123 |
. 2
⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
25 | 24 | pm2.43i 49 |
1
⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |