ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecapb GIF version

Theorem rerecapb 8986
Description: A real number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 18-Jan-2025.)
Assertion
Ref Expression
rerecapb (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rerecapb
StepHypRef Expression
1 rerecclap 8873 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)
2 recn 8128 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recidap 8829 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (1 / 𝐴)) = 1)
42, 3sylan 283 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 · (1 / 𝐴)) = 1)
5 oveq2 6008 . . . . . 6 (𝑥 = (1 / 𝐴) → (𝐴 · 𝑥) = (𝐴 · (1 / 𝐴)))
65eqeq1d 2238 . . . . 5 (𝑥 = (1 / 𝐴) → ((𝐴 · 𝑥) = 1 ↔ (𝐴 · (1 / 𝐴)) = 1))
76rspcev 2907 . . . 4 (((1 / 𝐴) ∈ ℝ ∧ (𝐴 · (1 / 𝐴)) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
81, 4, 7syl2anc 411 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
98ex 115 . 2 (𝐴 ∈ ℝ → (𝐴 # 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
10 ax-resscn 8087 . . . 4 ℝ ⊆ ℂ
11 ssrexv 3289 . . . 4 (ℝ ⊆ ℂ → (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
1210, 11ax-mp 5 . . 3 (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
13 recapb 8814 . . . 4 (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1))
1413biimprd 158 . . 3 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 → 𝐴 # 0))
152, 12, 14syl2im 38 . 2 (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 → 𝐴 # 0))
169, 15impbid 129 1 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  wss 3197   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   · cmul 8000   # cap 8724   / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator