![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rerecapb | GIF version |
Description: A real number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 18-Jan-2025.) |
Ref | Expression |
---|---|
rerecapb | ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rerecclap 8685 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ) | |
2 | recn 7943 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | recidap 8641 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (1 / 𝐴)) = 1) | |
4 | 2, 3 | sylan 283 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 · (1 / 𝐴)) = 1) |
5 | oveq2 5882 | . . . . . 6 ⊢ (𝑥 = (1 / 𝐴) → (𝐴 · 𝑥) = (𝐴 · (1 / 𝐴))) | |
6 | 5 | eqeq1d 2186 | . . . . 5 ⊢ (𝑥 = (1 / 𝐴) → ((𝐴 · 𝑥) = 1 ↔ (𝐴 · (1 / 𝐴)) = 1)) |
7 | 6 | rspcev 2841 | . . . 4 ⊢ (((1 / 𝐴) ∈ ℝ ∧ (𝐴 · (1 / 𝐴)) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
8 | 1, 4, 7 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
9 | 8 | ex 115 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
10 | ax-resscn 7902 | . . . 4 ⊢ ℝ ⊆ ℂ | |
11 | ssrexv 3220 | . . . 4 ⊢ (ℝ ⊆ ℂ → (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) |
13 | recapb 8626 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)) | |
14 | 13 | biimprd 158 | . . 3 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1 → 𝐴 # 0)) |
15 | 2, 12, 14 | syl2im 38 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 → 𝐴 # 0)) |
16 | 9, 15 | impbid 129 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⊆ wss 3129 class class class wbr 4003 (class class class)co 5874 ℂcc 7808 ℝcr 7809 0cc0 7810 1c1 7811 · cmul 7815 # cap 8536 / cdiv 8627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-po 4296 df-iso 4297 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-reap 8530 df-ap 8537 df-div 8628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |