ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfzle GIF version

Theorem difelfzle 10238
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 10218 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
2 elfznn0 10218 . . . . 5 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
3 nn0z 9374 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
4 nn0z 9374 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
5 zsubcl 9395 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾) ∈ ℤ)
63, 4, 5syl2anr 290 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾) ∈ ℤ)
76adantr 276 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℤ)
8 nn0re 9286 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9 nn0re 9286 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 subge0 8530 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
118, 9, 10syl2anr 290 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
1211biimpar 297 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → 0 ≤ (𝑀𝐾))
137, 12jca 306 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1413exp31 364 . . . . 5 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
151, 2, 14syl2im 38 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
16153imp 1195 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
17 elnn0z 9367 . . 3 ((𝑀𝐾) ∈ ℕ0 ↔ ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1816, 17sylibr 134 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℕ0)
19 elfz3nn0 10219 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
20193ad2ant1 1020 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ0)
21 elfz2nn0 10216 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2283ad2ant1 1020 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℝ)
23 resubcl 8318 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾) ∈ ℝ)
2422, 9, 23syl2an 289 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ∈ ℝ)
2522adantr 276 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
26 nn0re 9286 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27263ad2ant2 1021 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℝ)
2827adantr 276 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ)
29 nn0ge0 9302 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
3029adantl 277 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
31 subge02 8533 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3222, 9, 31syl2an 289 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3330, 32mpbid 147 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑀)
34 simpl3 1004 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀𝑁)
3524, 25, 28, 33, 34letrd 8178 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑁)
3635ex 115 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
3721, 36sylbi 121 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
381, 37syl5com 29 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝑀𝐾) ≤ 𝑁))
3938a1dd 48 . . 3 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → (𝑀𝐾) ≤ 𝑁)))
40393imp 1195 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ≤ 𝑁)
41 elfz2nn0 10216 . 2 ((𝑀𝐾) ∈ (0...𝑁) ↔ ((𝑀𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑀𝐾) ≤ 𝑁))
4218, 20, 40, 41syl3anbrc 1183 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2175   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907  cle 8090  cmin 8225  0cn0 9277  cz 9354  ...cfz 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator