ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfzle GIF version

Theorem difelfzle 9942
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 9925 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
2 elfznn0 9925 . . . . 5 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
3 nn0z 9098 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
4 nn0z 9098 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
5 zsubcl 9119 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾) ∈ ℤ)
63, 4, 5syl2anr 288 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾) ∈ ℤ)
76adantr 274 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℤ)
8 nn0re 9010 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9 nn0re 9010 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 subge0 8261 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
118, 9, 10syl2anr 288 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
1211biimpar 295 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → 0 ≤ (𝑀𝐾))
137, 12jca 304 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1413exp31 362 . . . . 5 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
151, 2, 14syl2im 38 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
16153imp 1176 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
17 elnn0z 9091 . . 3 ((𝑀𝐾) ∈ ℕ0 ↔ ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1816, 17sylibr 133 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℕ0)
19 elfz3nn0 9926 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
20193ad2ant1 1003 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ0)
21 elfz2nn0 9923 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2283ad2ant1 1003 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℝ)
23 resubcl 8050 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾) ∈ ℝ)
2422, 9, 23syl2an 287 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ∈ ℝ)
2522adantr 274 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
26 nn0re 9010 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27263ad2ant2 1004 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℝ)
2827adantr 274 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ)
29 nn0ge0 9026 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
3029adantl 275 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
31 subge02 8264 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3222, 9, 31syl2an 287 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3330, 32mpbid 146 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑀)
34 simpl3 987 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀𝑁)
3524, 25, 28, 33, 34letrd 7910 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑁)
3635ex 114 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
3721, 36sylbi 120 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
381, 37syl5com 29 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝑀𝐾) ≤ 𝑁))
3938a1dd 48 . . 3 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → (𝑀𝐾) ≤ 𝑁)))
40393imp 1176 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ≤ 𝑁)
41 elfz2nn0 9923 . 2 ((𝑀𝐾) ∈ (0...𝑁) ↔ ((𝑀𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑀𝐾) ≤ 𝑁))
4218, 20, 40, 41syl3anbrc 1166 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644  cle 7825  cmin 7957  0cn0 9001  cz 9078  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator