ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfzle GIF version

Theorem difelfzle 10134
Description: The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfzle ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))

Proof of Theorem difelfzle
StepHypRef Expression
1 elfznn0 10114 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
2 elfznn0 10114 . . . . 5 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
3 nn0z 9273 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
4 nn0z 9273 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
5 zsubcl 9294 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾) ∈ ℤ)
63, 4, 5syl2anr 290 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾) ∈ ℤ)
76adantr 276 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℤ)
8 nn0re 9185 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9 nn0re 9185 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10 subge0 8432 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
118, 9, 10syl2anr 290 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 ≤ (𝑀𝐾) ↔ 𝐾𝑀))
1211biimpar 297 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → 0 ≤ (𝑀𝐾))
137, 12jca 306 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1413exp31 364 . . . . 5 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
151, 2, 14syl2im 38 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))))
16153imp 1193 . . 3 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
17 elnn0z 9266 . . 3 ((𝑀𝐾) ∈ ℕ0 ↔ ((𝑀𝐾) ∈ ℤ ∧ 0 ≤ (𝑀𝐾)))
1816, 17sylibr 134 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ ℕ0)
19 elfz3nn0 10115 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
20193ad2ant1 1018 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ0)
21 elfz2nn0 10112 . . . . . 6 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2283ad2ant1 1018 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℝ)
23 resubcl 8221 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾) ∈ ℝ)
2422, 9, 23syl2an 289 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ∈ ℝ)
2522adantr 276 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
26 nn0re 9185 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27263ad2ant2 1019 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℝ)
2827adantr 276 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ)
29 nn0ge0 9201 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
3029adantl 277 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
31 subge02 8435 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3222, 9, 31syl2an 289 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ (𝑀𝐾) ≤ 𝑀))
3330, 32mpbid 147 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑀)
34 simpl3 1002 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → 𝑀𝑁)
3524, 25, 28, 33, 34letrd 8081 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾) ≤ 𝑁)
3635ex 115 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
3721, 36sylbi 121 . . . . 5 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ ℕ0 → (𝑀𝐾) ≤ 𝑁))
381, 37syl5com 29 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝑀𝐾) ≤ 𝑁))
3938a1dd 48 . . 3 (𝐾 ∈ (0...𝑁) → (𝑀 ∈ (0...𝑁) → (𝐾𝑀 → (𝑀𝐾) ≤ 𝑁)))
40393imp 1193 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ≤ 𝑁)
41 elfz2nn0 10112 . 2 ((𝑀𝐾) ∈ (0...𝑁) ↔ ((𝑀𝐾) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑀𝐾) ≤ 𝑁))
4218, 20, 40, 41syl3anbrc 1181 1 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4004  (class class class)co 5875  cr 7810  0cc0 7811  cle 7993  cmin 8128  0cn0 9176  cz 9253  ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-fz 10009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator