ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss GIF version

Theorem relrelss 5137
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4618 . . 3 (Rel dom 𝐴 ↔ dom 𝐴 ⊆ (V × V))
21anbi2i 454 . 2 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
3 relssdmrn 5131 . . . 4 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
4 ssv 3169 . . . . 5 ran 𝐴 ⊆ V
5 xpss12 4718 . . . . 5 ((dom 𝐴 ⊆ (V × V) ∧ ran 𝐴 ⊆ V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
64, 5mpan2 423 . . . 4 (dom 𝐴 ⊆ (V × V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
73, 6sylan9ss 3160 . . 3 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) → 𝐴 ⊆ ((V × V) × V))
8 xpss 4719 . . . . . 6 ((V × V) × V) ⊆ (V × V)
9 sstr 3155 . . . . . 6 ((𝐴 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (V × V)) → 𝐴 ⊆ (V × V))
108, 9mpan2 423 . . . . 5 (𝐴 ⊆ ((V × V) × V) → 𝐴 ⊆ (V × V))
11 df-rel 4618 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
1210, 11sylibr 133 . . . 4 (𝐴 ⊆ ((V × V) × V) → Rel 𝐴)
13 dmss 4810 . . . . 5 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ dom ((V × V) × V))
14 vn0m 3426 . . . . . 6 𝑥 𝑥 ∈ V
15 dmxpm 4831 . . . . . 6 (∃𝑥 𝑥 ∈ V → dom ((V × V) × V) = (V × V))
1614, 15ax-mp 5 . . . . 5 dom ((V × V) × V) = (V × V)
1713, 16sseqtrdi 3195 . . . 4 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ (V × V))
1812, 17jca 304 . . 3 (𝐴 ⊆ ((V × V) × V) → (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
197, 18impbii 125 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) ↔ 𝐴 ⊆ ((V × V) × V))
202, 19bitri 183 1 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730  wss 3121   × cxp 4609  dom cdm 4611  ran crn 4612  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  dftpos3  6241  tpostpos2  6244
  Copyright terms: Public domain W3C validator