ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss GIF version

Theorem relrelss 5196
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4670 . . 3 (Rel dom 𝐴 ↔ dom 𝐴 ⊆ (V × V))
21anbi2i 457 . 2 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
3 relssdmrn 5190 . . . 4 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
4 ssv 3205 . . . . 5 ran 𝐴 ⊆ V
5 xpss12 4770 . . . . 5 ((dom 𝐴 ⊆ (V × V) ∧ ran 𝐴 ⊆ V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
64, 5mpan2 425 . . . 4 (dom 𝐴 ⊆ (V × V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V))
73, 6sylan9ss 3196 . . 3 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) → 𝐴 ⊆ ((V × V) × V))
8 xpss 4771 . . . . . 6 ((V × V) × V) ⊆ (V × V)
9 sstr 3191 . . . . . 6 ((𝐴 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (V × V)) → 𝐴 ⊆ (V × V))
108, 9mpan2 425 . . . . 5 (𝐴 ⊆ ((V × V) × V) → 𝐴 ⊆ (V × V))
11 df-rel 4670 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
1210, 11sylibr 134 . . . 4 (𝐴 ⊆ ((V × V) × V) → Rel 𝐴)
13 dmss 4865 . . . . 5 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ dom ((V × V) × V))
14 vn0m 3462 . . . . . 6 𝑥 𝑥 ∈ V
15 dmxpm 4886 . . . . . 6 (∃𝑥 𝑥 ∈ V → dom ((V × V) × V) = (V × V))
1614, 15ax-mp 5 . . . . 5 dom ((V × V) × V) = (V × V)
1713, 16sseqtrdi 3231 . . . 4 (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ (V × V))
1812, 17jca 306 . . 3 (𝐴 ⊆ ((V × V) × V) → (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)))
197, 18impbii 126 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) ↔ 𝐴 ⊆ ((V × V) × V))
202, 19bitri 184 1 ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  wss 3157   × cxp 4661  dom cdm 4663  ran crn 4664  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  dftpos3  6320  tpostpos2  6323
  Copyright terms: Public domain W3C validator