![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relrelss | GIF version |
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.) |
Ref | Expression |
---|---|
relrelss | ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4633 | . . 3 ⊢ (Rel dom 𝐴 ↔ dom 𝐴 ⊆ (V × V)) | |
2 | 1 | anbi2i 457 | . 2 ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V))) |
3 | relssdmrn 5149 | . . . 4 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | |
4 | ssv 3177 | . . . . 5 ⊢ ran 𝐴 ⊆ V | |
5 | xpss12 4733 | . . . . 5 ⊢ ((dom 𝐴 ⊆ (V × V) ∧ ran 𝐴 ⊆ V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V)) | |
6 | 4, 5 | mpan2 425 | . . . 4 ⊢ (dom 𝐴 ⊆ (V × V) → (dom 𝐴 × ran 𝐴) ⊆ ((V × V) × V)) |
7 | 3, 6 | sylan9ss 3168 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) → 𝐴 ⊆ ((V × V) × V)) |
8 | xpss 4734 | . . . . . 6 ⊢ ((V × V) × V) ⊆ (V × V) | |
9 | sstr 3163 | . . . . . 6 ⊢ ((𝐴 ⊆ ((V × V) × V) ∧ ((V × V) × V) ⊆ (V × V)) → 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpan2 425 | . . . . 5 ⊢ (𝐴 ⊆ ((V × V) × V) → 𝐴 ⊆ (V × V)) |
11 | df-rel 4633 | . . . . 5 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
12 | 10, 11 | sylibr 134 | . . . 4 ⊢ (𝐴 ⊆ ((V × V) × V) → Rel 𝐴) |
13 | dmss 4826 | . . . . 5 ⊢ (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ dom ((V × V) × V)) | |
14 | vn0m 3434 | . . . . . 6 ⊢ ∃𝑥 𝑥 ∈ V | |
15 | dmxpm 4847 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ V → dom ((V × V) × V) = (V × V)) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ dom ((V × V) × V) = (V × V) |
17 | 13, 16 | sseqtrdi 3203 | . . . 4 ⊢ (𝐴 ⊆ ((V × V) × V) → dom 𝐴 ⊆ (V × V)) |
18 | 12, 17 | jca 306 | . . 3 ⊢ (𝐴 ⊆ ((V × V) × V) → (Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V))) |
19 | 7, 18 | impbii 126 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ (V × V)) ↔ 𝐴 ⊆ ((V × V) × V)) |
20 | 2, 19 | bitri 184 | 1 ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 Vcvv 2737 ⊆ wss 3129 × cxp 4624 dom cdm 4626 ran crn 4627 Rel wrel 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-xp 4632 df-rel 4633 df-cnv 4634 df-dm 4636 df-rn 4637 |
This theorem is referenced by: dftpos3 6262 tpostpos2 6265 |
Copyright terms: Public domain | W3C validator |