MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2i Structured version   Visualization version   GIF version

Theorem eusv2i 5334
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 2585 . . 3 𝑦∃!𝑦𝑥 𝑦 = 𝐴
2 nfcvd 2896 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝑦)
3 eusvnf 5332 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
42, 3nfeqd 2906 . . . . 5 (∃!𝑦𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
54nfrd 1792 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴))
6 19.2 1977 . . . 4 (∀𝑥 𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴)
75, 6impbid1 225 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑦 = 𝐴))
81, 7eubid 2584 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴))
98ibir 268 1 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wex 1780  ∃!weu 2565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-nul 4283
This theorem is referenced by:  eusv2nf  5335
  Copyright terms: Public domain W3C validator