![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eusv2i | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2i | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2591 | . . 3 ⊢ Ⅎ𝑦∃!𝑦∀𝑥 𝑦 = 𝐴 | |
2 | nfcvd 2909 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝑦) | |
3 | eusvnf 5410 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
4 | 2, 3 | nfeqd 2919 | . . . . 5 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
5 | 4 | nfrd 1789 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
6 | 19.2 1976 | . . . 4 ⊢ (∀𝑥 𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) | |
7 | 5, 6 | impbid1 225 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑦 = 𝐴)) |
8 | 1, 7 | eubid 2590 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴)) |
9 | 8 | ibir 268 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∃wex 1777 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-nul 4353 |
This theorem is referenced by: eusv2nf 5413 |
Copyright terms: Public domain | W3C validator |