MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2i Structured version   Visualization version   GIF version

Theorem eusv2i 5312
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 2588 . . 3 𝑦∃!𝑦𝑥 𝑦 = 𝐴
2 nfcvd 2907 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝑦)
3 eusvnf 5310 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
42, 3nfeqd 2916 . . . . 5 (∃!𝑦𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
54nfrd 1795 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴))
6 19.2 1981 . . . 4 (∀𝑥 𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴)
75, 6impbid1 224 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑦 = 𝐴))
81, 7eubid 2587 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃!𝑦𝑥 𝑦 = 𝐴))
98ibir 267 1 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wex 1783  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-nul 4254
This theorem is referenced by:  eusv2nf  5313
  Copyright terms: Public domain W3C validator