Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eusv2i | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2i | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2588 | . . 3 ⊢ Ⅎ𝑦∃!𝑦∀𝑥 𝑦 = 𝐴 | |
2 | nfcvd 2908 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝑦) | |
3 | eusvnf 5315 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
4 | 2, 3 | nfeqd 2917 | . . . . 5 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
5 | 4 | nfrd 1794 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
6 | 19.2 1980 | . . . 4 ⊢ (∀𝑥 𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) | |
7 | 5, 6 | impbid1 224 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑦 = 𝐴)) |
8 | 1, 7 | eubid 2587 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴)) |
9 | 8 | ibir 267 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∃wex 1782 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-nul 4257 |
This theorem is referenced by: eusv2nf 5318 |
Copyright terms: Public domain | W3C validator |